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ABSTRACT: Software fault prediction (SFP) is the process of building models to predict faults in the early stage of 

software development. Prediction of software fault-prone modules can help developers allocate testing efforts more effectively and 

optimize maintenance cost. However, the performance of SFP models is influenced by the quality of software fault datasets. The 

irrelevant and redundant features of datasets may lead to negative impacts on the speed and accuracy of the trained models. 

Additionally, the presence of data imbalance that the number of faulty modules is significantly less than the number of non-faulty 

modules is the challenge in SFP. The study has applied 3 Generative adversarial networks (GAN) models including VanillaGAN, 

CTGAN and WGANGP along with 4 feature selection ranking methods including Chi-Squared, Information Gain, Fisher and Relief 

on four software fault datasets. The comparative analysis is performed by using 4 different classifiers to predict software faults. We 

have considered precision, recall, F1-score and Area Under the ROC (receiver operating characteristic curve) Curve (AUC) as 

performance evaluation metrics. The experimental results reveal that combinations of CTGAN, VanillaGAN and feature selection 

approaches outperformed the SFP models without applying data sampling and feature selection methods. The combinational pair of 

CTGAN and Relief demonstrated the best performance than other combinations with the highest average precision, recall, F1-score 

and AUC values of 0.857, 0.873, 0.856 and 0.767, respectively on Extra Tree.       

Keywords: Software fault prediction, Feature selection, Data sampling, Promise. 

 

I. INTRODUCTION 

Recently, software systems are growing in both complexity and size, thereby ensuring their reliability and 

quality becomes increasingly critical. According to Arar et al. [1], software testing and other software quality activities 

account for about 23% of the total software budget. Software faults need to be eliminated to improve software quality 

and reduce cost maintenance. Therefore, it would be beneficial to identify potential faults in the early stage of software 

development. As a result, software fault prediction techniques are proposed to predict the occurrence of faults and 

assist software developers allocate their testing resources effectively [2]. Software fault prediction [3, 4] is the process 

of building classification models to predict whether code regions contain faults or not using historical fault data. The 

typical fault prediction consists of two phases [5]: extracting code features from source files and developing classifiers 

using machine learning and deep learning models for training and testing. Several previous studies in fault prediction 

have used manually designed software metrics including Halstead metrics [6], McCabe metrics [7], CK metrics [8], 

etc. For the second phase, machine learning models such as Random Forest [9], Logistic Regression [10], Naive Bayes 

[11] were applied. However, the performance of software fault prediction models depends on various factors such as 

fault datasets, software metrics, machine learning techniques and dataset issues [12]. As shown from several studies 

[13-15], most historic fault datasets have issues including redundant, irrelevant features and imbalanced classes that 

lead to negative effects on predictive performance. Generally, in the software fault dataset, the number of non-faulty 

modules (the majority classes) outnumbers the number of faulty modules (the monitory classes), resulting in 

imbalanced classes [15]. This usually causes the machine learning models to give inaccurate results. Consequently, the 

problem of data imbalance is the most significant challenge impacting on the SFP’s models and a growing number of 

approaches have been proposed to overcome it. Additionally, irrelevant and redundant features also affect the speed 

and accuracy of the trained classifiers [16]. Feature selection technique is required for selecting the best subsets of 

software metrics to achieve good prediction results [17]. Hence, in this paper, we applied four feature rankings to select 

the optimal software metrics/features that are effective to train the SFP models. In addition, another object of our study 

is to handle the class imbalance problem which can improve the predictive performance. In order to overcome both the 

class imbalance and irrelevant/redundant feature elimination, we conduct the implementation of a combination of three 

oversampling methods and four filter-based feature selection techniques to identify the best-performing combination 

for SFP models. We have considered precision, recall, Area Under the ROC Curve (AUC) and F1-score performance 

metrics to compare the performance of various combinations of feature selection and oversampling techniques. This 

paper provides the following contributions: 

• The experiment was carried out to examine the combined approach of 20 different combinations of filter-

based feature selection and oversampling techniques (4 feature selection techniques + 1 full metrics)  (3 

oversampling techniques + 1 original dataset) on 4 fault datasets extracted from the PROMISE repository [18] 

with the employment of different classification algorithms such as Random Forest (RF), Extra Tree (ET), 

AdaBoost (AdaBoost), Histogram-based Gradient Boosting (HGB) to draw a conclusion of the best 

combinations. 
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• The performance of SFP models was compared with applying feature selection and sampling techniques to 

examine the significant effects of these techniques in handling irrelevant/redundant features and class 

imbalance. 

The paper is structured as follows. Section II introduces related work in software fault prediction field. Section 

III provides the details of the experimental design and analysis. The experimental results are presented and discussed in 

Section IV. Finally, Section V presents the conclusion of our study. 

II. RELATED WORK 

In the field of software fault prediction, several studies have been done on investigating feature selection and 

sampling methods independently [19]. Nevendra et al. [20] proposed a new approach called AdaBoost.ET which 

developed boosting and bagging-based learners to improve the prediction rate. Mangla et al. [21] presented a 

sequential model to predict software faults on the 8 datasets extracted from the PROMISE and ECLIPSE repositories. 

The proposed approaches have built software fault prediction models based on software metrics. Jureczko [22] 

conducted a review of the effectiveness of various software metrics and evaluated the correlation between the software 

faults and metrics. They analyzed several CK metrics such as Depth of Inheritance Tree (DIT), Coupling between 

object classes (CBO), Weighted Methods per Class (WMC), Number of Children (NOC), etc. However, feature 

redundancy has affected on the speed and accuracy of SFP models, hence, several literature reviews showed feature 

selection is an important stage that leads to better performance of classifiers [23]. The aim of feature selection is to 

select the optimal set of metrics for optimizing the performance of SFP models. Thus, in this paper, we have applied 

four filter-based feature selection techniques over 4 datasets to generate the best software metrics that are useful for 

trained models. Additionally, the input datasets are usually imbalanced with the number of non-faulty classes (majority 

classes) significantly greater than the number of faulty classes (monitory classes). In this case, machine learning 

models may not learn sufficient data for faulty classes to produce reliable results. However, there are few studies that 

have been conducted to address both feature redundancy and class imbalance problems [12, 24]. Based on the above 

discussion, it is observed that there is a need for in-depth research to evaluate the performance of SFP models by 

combining sampling and feature selection techniques. Therefore, for the motivation of this study, we exploited the 

implication of 3 sampling strategies (VanillaGAN, CTGAN, WGANGP) and 4 feature selection techniques (Relief, 

Info gain, Fisher and Chi-squared) to tackle the class imbalance and feature redundancy problem. The performance of 

the developed SFP model is analyzed using precision, recall and F1-score evaluation metrics developed with the 

implication of sampling and feature selection techniques. 

III. METHODOLOGY 

In this paper, our objective is to determine the best sets of software metrics and handle imbalanced classes for 

building effective SFP models with high prediction performance. The steps of the proposed experimental methodology 

are shown in Figure 1. Overview of the proposed methodologyFirstly, we collected four fault datasets, namely CM1, 

KC1, KC2 and PC1 from the PROMISE repository. We applied data normalization using the z-normalization technique 

for pre-preprocessing stage. The normalized datasets are split into training and test sets. After applying three GAN 

oversampling models including VanillaGAN, CTGAN and WGANGP to balance training datasets, we utilized four 

filter-based feature selections, namely Chi-Squared, Information Gain, Fisher and Relief to extract the top log2N 

features (N - the total number of software metrics in the full fault datasets). The balanced training datasets with optimal 

features were trained on Random Forest (RF), Extra Tree (ET), AdaBoost (AB) and HistGradientBoosting (HG). The 

test sets are then fed to SFP models for comparing to the performance of these models using combinations of feature 

selection and data sampling techniques in terms of precision, recall, F1-score and AUC. The following sections 

indicate in detail software fault dataset, filter-based feature selection, GAN oversampling techniques and performance 

evaluation measures.  

A. Datasets 

In this study, we have used 4 different datasets extracted from the PROMISE repository which are widely used 

in many studies [19, 20]. In terms of software fault prediction, each dataset contains the independent variables which 

are source code metrics such as Line of Code (LOC), Depth of Inheritance Tree (DIT), etc... and the dependent variable 

is faulty or non-faulty module. The detailed datasets are shown in Table 1. Description of the used software fault 

datasets. 

Table 1. Description of the used software fault datasets 

Dataset Release Instances Metrics Faulty 

Instances 

Imbalanced 

Ratio (%) 

PROMISE CM1 498 21 48 9.7 

 KC1 2107 21 325 15.4 

 KC2 522 21 107 20.5 

 PC1 1107 21 76 6.9 
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Figure 1. Overview of the proposed methodology 

B. Filter-based feature selection  

The filter methods use ranking techniques to score the features and a threshold is utilized to eliminate features 

below the threshold. The ranking techniques are applied before the classification stage to filter out the 

redundant/irrelevant features [17]. The feature selection ranking methods used in this study are Chi-Squared, 

Information Gain, Fisher and Relief which select optimal software metrics. While Chi-Squared is used to rank features 

according to significance, Information Gain is an entropy-based which is calculated by comparing the entropy of the 

dataset before and after splitting on features. The aim of Relief is to distinguish between instances of different classes 

by estimating the importance or relevance of each feature. The Fisher score is derived from Fisher’s criterion, which 

seeks to maximize the distance between the class means while minimizing the variance within each class [27]. 

C. Data oversampling 

VanilaGAN is the simplest version of GAN. The generator network leans the probability of the training set by 

mapping the noise z which is drawn independent and identically distributed from N (0, 0.01) and added to both real and 

synthetic data to the probability distribution of training samples. Then, synthetic samples that are closer to real samples 

were generated by the generator network. It uses backpropagation to train both models. In VanillaGAN, we use neural 

networks to approximate complex, high-dimensional distributions for both generator and discriminator. The 

discriminator training is done by minimizing its prediction error, whereas the generator is trained by maximizing the 

prediction error by the discriminator. This can be formalized as follows: 

𝑚𝑖𝑛(⊝𝐺𝑒𝑛)𝑚𝑎𝑥(⊝𝐷𝑖𝑠) (𝐸𝑥∼𝑝𝐷
[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥)] + 𝐸𝑧∼𝑝𝑧

[log (1 − 𝐷𝑖𝑠(𝐺𝑒𝑛(𝑧)))])                                      (1) 

where 𝑝𝐷 is the real data distribution, 𝑝𝑧 is the prior distribution of the generative network and ⊝ 𝐺𝑒𝑛 and ⊝ 𝐷𝑖𝑠 are 

the parameters of the generator (Gen) and discriminator (Dis). Given a strong discriminator, the generator’s goal is 

achieved if 𝑝𝐷, the generator’s distribution over x, equals 𝑝𝑧, the real distribution, which means that the Jensen-

Shannon Divergence (JSD) is minimized. 

WGANGP is short for Wasserstein GAN with Gradient Penalty, a variant of GAN. WGAN (Wasserstein GAN) 

helps to tackle issue of VanillaGAN that guarantees the model will converge at equilibrium. However, WGAN faces a 

vanishing gradient problem. Therefore, WGANGP was proposed to solve gradient vanishing, or exploding problems 

that were there in WGAN by using a gradient penalty instead of the weight-clipping. The GAN objective is defined as 

follows: 

𝑚𝑖𝑛(⊝𝐺𝑒𝑛)𝑚𝑎𝑥(⊝𝐷𝑖𝑠)(𝐸𝑥∼𝑝𝐷
[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥)] −  𝐸𝑧∼𝑝𝑧

[𝐷𝑖𝑠(𝐺𝑒𝑛(𝑧))]) − ⋋ 𝐸𝑥∼𝑝𝑥  
[(||∇𝑥(𝑥̂)| |2 − 1)2]            (2) 

where ⋋ is the penalty coefficient. WGANGP uses a two-sided penalty based on empirical evidence that penalizes 

gradients with a norm less than 1. The gradient penalty serves as a regularizer, ensuring that a discriminator that has 

been trained to perfection has a smooth linear gradient that guides the generator to the data distribution while 

restricting the discriminator’s power. 

CTGAN is a GAN-based data synthesizer for single table data, which is able to learn from real data and 

generates synthetic data with high fidelity. Unlike the above two variations of GAN, CTGAN uses mode-specific 

normalization instead of min-max normalization for continuous columns. The mode-specific normalization technique is 

leveraged to deal with columns that contain non-Gaussian and multimodal distributions. For each continuous column, 
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CTGAN uses a variational Gaussian mixture model (VGM) to predict the number of modes and fit a Gaussian mixture 

(GM). 

D. Performance evaluation measures 

In order to evaluate the performance feature selection ranking and data oversampling techniques, we considered 

evaluation metrics such as precision, recall, F1-score and AUC. Table 2. Confusion matrix presents a confusion matrix 

for two-class classifiers. 
Table 2. Confusion matrix 

Actual Predicted 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

• Precision: the ratio of positive instances from the total predicted positive instances. 

• Recall: known as sensitive, it presents the ratio of positive instances and the total actual positive instances. 

• F1-score: the harmonic mean of recall and precision. 

• AUC: is a summary of the ROC (the Receiver Operating Curve) that evaluates the ability of a classifier to 

distinguish between classes. 

IV.  EXPERIMENTAL RESULTS 

This section illustrates the experimental results on four fault datasets to evaluate the performance of combined 

techniques (filter-based feature selection and oversampling). As mentioned previously, 3 different oversampling 

methods are employed to balance 4 datasets with software metrics and 4 filter-based feature selection techniques have 

been applied to overcome the redundancy problem. The performance of SFP models with oversampling and feature 

selection techniques based on the selected and full software metrics is shown in Tables 4-7. The average performance 

of four classifiers (RF, ET, AB and HGB) was also computed in each table to examine the effectiveness of feature 

selection and data sampling in SFP in terms of precision, recall, F1-score and AUC. As shown in Tables 4-7, it is 

observed that the performance of the predictive models based on a combination of 4 filter-based feature selection and 2 

oversampling methods (VanillaGAN and CTGAN) was better than when no feature selection and data sampling are 

utilized (as shown in Table 3). For instance, the average AUC values of the SFP model on the original datasets are 

0.690, 0.711, 0.719 and 0.733 with the RF, ET, AB, and HGB model, respectively.    

Table 3. Results of the SFP models without data sampling and feature selection 

Dataset Performance 

Measures RF ET AB HGB 

CM1 Precision 0.511 0.580 0.589 0.577 

 Recall 0.502 0.556 0.561 0.542 

 F1-score 0.502 0.563 0.567 0.546 

 AUC 0.634 0.623 0.703 0.718 

KC1 Precision 0.719 0.707 0.689 0.714 

 Recall 0.579 0.623 0.609 0.640 

 F1-score 0.596 0.645 0.630 0.663 

 AUC 0.702 0.710 0.723 0.728 

KC2 Precision 0.726 0.694 0.702 0.725 

 Recall 0.665 0.646 0.671 0.678 

 F1-score 0.684 0.660 0.683 0.695 

 AUC 0.701 0.724 0.707 0.721 

PC1 Precision 0.763 0.730 0.653 0.714 

 Recall 0.594 0.593 0.616 0.620 

 F1-score 0.629 0.624 0.629 0.649 

 AUC 0.726 0.788 0.746 0.766 

Average 

 Precision 0.679 0.677 0.658 0.682 

 Recall 0.585 0.605 0.614 0.620 

 F1-score 0.603 0.623 0.627 0.638 

 AUC 0.690 0.711 0.719 0.733 

 

When comparing the average values of the combinational pairs of filter-based feature selection and sampling 

techniques in Table 4, a combination of Chi-Squared and CTGAN exhibited the greatest value for all performance 

measures, followed by pair of Chi-Squared and VanillaGAN. In particular, the average results of these pairs gained the 

highest results for precision, recall, F1-score and AUC with 0.848, 0.867, 0.851 and 0.771, respectively. As shown in 

Table 5, it can be seen that the combination of Information Gain and CTGAN performed the best precision, recall and 

F1-score on the PC1, with the highest values of 0.924, 0.932 and 0.925. Again, the pair of Information Gain and 

CTGAN on Extra Tree also obtained the best average results for precision, recall and F1-score values of 0.849, 0.867 

and 0.852. As the results of Table 6, it is evident that the combination of Fisher and CTGAN outperformed other 
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models for all performance measures on most datasets. For instance, it achieved the highest values of precision, recall 

and F1-score with 0.925, 0.935 and 0.925, respectively. As depicted in Table 7. Results of the Relief&GAN methods, 

we observed that Relief and CTGAN achieved a better performance than other combinations of filter-based feature 

selection and oversampling techniques with the highest average precision, recall, F1-score and AUC values of 0.857, 

0.873, 0.856 and 0.767, respectively on Extra Tree. 
Table 4. Results of the Chi-Squared & GAN methods 

Dataset Performance 

Evaluation 

Chi-Squared 

VanillaGAN CTGAN WGANGP 

RF ET AB HGB RF ET AB HGB RF ET AB HGB 

CM1 Precision 0.826 0.856 0.843 0.849 0.843 0.856 0.854 0.837 0.834 0.819 0.828 0.821 

 Recall 0.712 0.824 0.780 0.810 0.860 0.878 0.848 0.846 0.804 0.832 0.726 0.816 

 F1-score 0.758 0.834 0.806 0.827 0.849 0.861 0.849 0.840 0.816 0.824 0.766 0.817 

 AUC 0.635 0.739 0.679 0.706 0.675 0.739 0.723 0.690 0.643 0.657 0.574 0.679 

KC1 Precision 0.809 0.816 0.807 0.823 0.817 0.827 0.813 0.825 0.804 0.804 0.797 0.808 

 Recall 0.759 0.826 0.802 0.831 0.845 0.848 0.841 0.850 0.814 0.808 0.815 0.802 

 F1-score 0.778 0.820 0.804 0.826 0.820 0.830 0.817 0.830 0.803 0.802 0.801 0.799 

 AUC 0.752 0.794 0.753 0.780 0.793 0.793 0.745 0.781 0.755 0.734 0.647 0.734 

KC2 Precision 0.815 0.785 0.795 0.788 0.798 0.785 0.786 0.787 0.809 0.813 0.807 0.825 

 Recall 0.809 0.798 0.798 0.796 0.815 0.806 0.8 0.806 0.638 0.672 0.657 0.668 

 F1-score 0.811 0.788 0.794 0.788 0.792 0.788 0.788 0.791 0.665 0.698 0.682 0.693 

 AUC 0.777 0.783 0.701 0.773 0.785 0.775 0.658 0.762 0.753 0.799 0.744 0.761 

PC1 Precision 0.899 0.919 0.919 0.916 0.877 0.925 0.913 0.930 0.884 0.911 0.887 0.891 

 Recall 0.824 0.916 0.907 0.916 0.922 0.935 0.921 0.938 0.817 0.814 0.682 0.823 

 F1-score 0.854 0.917 0.911 0.915 0.897 0.925 0.916 0.929 0.837 0.836 0.739 0.844 

 AUC 0.780 0.784 0.839 0.826 0.724 0.775 0.838 0.802 0.681 0.698 0.616 0.663 

 Average 

 Precision 0.837 0.844 0.841 0.844 0.833 0.848 0.841 0.845 0.833 0.837 0.830 0.836 

 Recall 0.776 0.841 0.822 0.838 0.860 0.867 0.852 0.860 0.768 0.781 0.720 0.777 

 F1-score 0.800 0.840 0.829 0.839 0.839 0.851 0.842 0.847 0.780 0.790 0.747 0.788 

 AUC 0.736 0.775 0.743 0.771 0.744 0.771 0.741 0.759 0.708 0.722 0.645 0.709 

 
Table 5. Results of the Information Gain&GAN methods 

Dataset Performance 

Evaluation 

Information Gain 

VanillaGAN CTGAN WGANGP 

RF ET AB HGB RF ET AB HGB RF ET AB HGB 

CM1 Precision 0.853 0.853 0.843 0.844 0.832 0.863 0.864 0.832 0.834 0.823 0.827 0.820 

 Recall 0.722 0.840 0.790 0.812 0.870 0.888 0.866 0.850 0.858 0.852 0.782 0.790 

 F1-score 0.769 0.843 0.812 0.826 0.847 0.865 0.861 0.839 0.844 0.836 0.801 0.802 

 AUC 0.671 0.695 0.644 0.658 0.671 0.695 0.662 0.627 0.633 0.63 0.621 0.638 

KC1 Precision 0.797 0.808 0.811 0.808 0.815 0.807 0.810 0.809 0.814 0.795 0.804 0.802 

 Recall 0.836 0.830 0.841 0.832 0.845 0.832 0.840 0.836 0.827 0.796 0.807 0.789 

 F1-score 0.801 0.815 0.818 0.816 0.822 0.815 0.814 0.817 0.817 0.792 0.804 0.793 

 AUC 0.765 0.784 0.735 0.761 0.773 0.778 0.737 0.754 0.763 0.725 0.664 0.725 

KC2 Precision 0.803 0.807 0.791 0.811 0.821 0.803 0.776 0.794 0.798 0.804 0.813 0.812 

 Recall 0.804 0.815 0.791 0.813 0.825 0.815 0.787 0.808 0.64 0.643 0.628 0.634 

 F1-score 0.800 0.807 0.789 0.807 0.807 0.801 0.778 0.796 0.661 0.668 0.655 0.657 

 AUC 0.777 0.791 0.726 0.792 0.812 0.788 0.651 0.783 0.765 0.788 0.737 0.767 

PC1 Precision 0.893 0.918 0.899 0.907 0.881 0.924 0.909 0.911 0.879 0.890 0.878 0.889 

 Recall 0.892 0.915 0.907 0.917 0.919 0.932 0.922 0.922 0.799 0.877 0.818 0.858 

 F1-score 0.891 0.915 0.902 0.911 0.897 0.925 0.913 0.914 0.829 0.876 0.838 0.866 

 AUC 0.772 0.755 0.757 0.797 0.689 0.747 0.781 0.780 0.649 0.663 0.559 0.698 

 Average 

 Precision 0.836 0.846 0.836 0.843 0.837 0.849 0.840 0.836 0.831 0.828 0.830 0.830 

 Recall 0.813 0.850 0.832 0.844 0.864 0.867 0.854 0.854 0.781 0.792 0.759 0.768 

 F1-score 0.816 0.845 0.830 0.840 0.843 0.852 0.842 0.842 0.788 0.793 0.775 0.780 

 AUC 0.746 0.753 0.716 0.752 0.736 0.753 0.708 0.736 0.702 0.702 0.645 0.707 
 

However, the combinations of each feature selection technique (Chi-Squared, Information Gain, Fisher, Relief) 

and WGAN produced the same performance when no feature selection and data sampling techniques were applied. 

When comparing the performance of the WGANP method with the AdaBoost technique, we found that the average 

AUC values of Chi-Squared, Information Gain, Fisher and Relief had the lowest AUC values with 0.645, 0.645, 0.666 

and 0.691 respectively as shown in Tables 4-7.  
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Table 6. Results of the Fisher&GAN methods 

Dataset Performance 

Evaluation 

Fisher 

VanillaGAN CTGAN WGANGP 

RF ET AB HGB RF ET AB HGB RF ET AB HGB 

CM1 Precision 0.833 0.842 0.836 0.828 0.845 0.837 0.836 0.840 0.818 0.814 0.828 HgB 

 Recall 0.674 0.838 0.766 0.794 0.850 0.866 0.816 0.852 0.788 0.852 0.746 0.832 

 F1-score 0.734 0.839 0.794 0.810 0.844 0.848 0.824 0.845 0.799 0.832 0.778 0.820 

 AUC 0.632 0.678 0.615 0.689 0.670 0.707 0.619 0.659 0.613 0.653 0.637 0.824 

KC1 Precision 0.809 0.827 0.813 0.828 0.818 0.833 0.813 0.829 0.803 0.800 0.806 0.708 

 Recall 0.785 0.839 0.834 0.844 0.843 0.855 0.839 0.851 0.800 0.792 0.783 0.805 

 F1-score 0.794 0.832 0.819 0.833 0.823 0.836 0.819 0.835 0.798 0.795 0.793 0.773 

 AUC 0.763 0.798 0.749 0.770 0.783 0.798 0.748 0.778 0.755 0.747 0.686 0.785 

KC2 Precision 0.795 0.810 0.794 0.825 0.784 0.792 0.795 0.794 0.818 0.827 0.806 0.755 

 Recall 0.783 0.811 0.794 0.830 0.8 0.811 0.809 0.815 0.675 0.664 0.628 0.829 

 F1-score 0.787 0.808 0.793 0.826 0.778 0.793 0.799 0.799 0.700 0.690 0.649 0.674 

 AUC 0.774 0.793 0.708 0.763 0.781 0.787 0.666 0.761 0.724 0.803 0.728 0.699 

PC1 Precision 0.902 0.919 0.927 0.920 0.893 0.930 0.925 0.935 0.890 0.903 0.880 0.732 

 Recall 0.900 0.93 0.932 0.926 0.914 0.939 0.932 0.942 0.846 0.877 0.732 0.896 

 F1-score 0.900 0.922 0.926 0.922 0.899 0.932 0.927 0.935 0.865 0.883 0.785 0.851 

 AUC 0.867 0.808 0.817 0.889 0.749 0.816 0.867 0.879 0.700 0.732 0.611 0.868 

 Average 

 Precision 0.835 0.848 0.842 0.850 0.835 0.848 0.842 0.849 0.832 0.836 0.830 0.840 

 Recall 0.786 0.855 0.832 0.849 0.852 0.867 0.849 0.865 0.777 0.796 0.722 0.780 

 F1-score 0.804 0.850 0.833 0.848 0.836 0.852 0.842 0.853 0.790 0.800 0.751 0.794 

 AUC 0.759 0.769 0.722 0.778 0.746 0.776 0.725 0.769 0.698 0.734 0.666 0.733 

 
Table 7. Results of the Relief&GAN methods 

Dataset Performance 

Evaluation 

Relief 

VanillaGAN CTGAN WGANGP 

RF ET AB HGB RF ET AB HGB RF ET AB HGB 

CM1 Precision 0.845 0.848 0.843 0.835 0.824 0.872 0.855 0.844 0.829 0.834 0.839 0.831 

 Recall 0.696 0.808 0.784 0.788 0.866 0.890 0.860 0.866 0.828 0.864 0.752 0.814 

 F1-score 0.75 0.824 0.807 0.807 0.844 0.868 0.856 0.851 0.827 0.848 0.787 0.821 

 AUC 0.647 0.716 0.672 0.673 0.676 0.711 0.716 0.670 0.648 0.637 0.661 0.690 

KC1 Precision 0.815 0.824 0.811 0.827 0.815 0.833 0.825 0.843 0.815 0.821 0.816 0.824 

 Recall 0.781 0.838 0.833 0.845 0.844 0.854 0.85 0.861 0.811 0.806 0.782 0.800 

 F1-score 0.793 0.829 0.819 0.833 0.821 0.836 0.828 0.847 0.810 0.807 0.792 0.805 

 AUC 0.773 0.798 0.737 0.776 0.788 0.797 0.757 0.788 0.759 0.746 0.720 0.740 

KC2 Precision 0.811 0.789 0.789 0.798 0.781 0.802 0.785 0.789 0.816 0.809 0.797 0.812 

 Recall 0.794 0.804 0.791 0.804 0.804 0.817 0.798 0.806 0.658 0.651 0.609 0.642 

 F1-score 0.800 0.793 0.788 0.799 0.78 0.800 0.789 0.792 0.682 0.675 0.634 0.665 

 AUC 0.796 0.789 0.705 0.772 0.781 0.783 0.652 0.772 0.780 0.791 0.738 0.760 

PC1 Precision 0.900 0.913 0.916 0.915 0.871 0.922 0.914 0.929 0.893 0.902 0.893 0.898 

 Recall 0.859 0.917 0.905 0.913 0.914 0.932 0.921 0.937 0.794 0.770 0.695 0.759 

 F1-score 0.873 0.914 0.909 0.912 0.89 0.921 0.915 0.928 0.823 0.798 0.747 0.800 

 AUC 0.782 0.783 0.839 0.814 0.691 0.775 0.841 0.802 0.680 0.707 0.646 0.685 

 Average 

 Precision 0.843 0.843 0.840 0.844 0.822 0.857 0.845 0.851 0.838 0.841 0.836 0.841 

 Recall 0.783 0.842 0.828 0.837 0.857 0.873 0.857 0.867 0.773 0.773 0.710 0.753 

 F1-score 0.804 0.840 0.831 0.838 0.834 0.856 0.847 0.855 0.785 0.782 0.740 0.773 

 AUC 0.757 0.767 0.738 0.759 0.734 0.767 0.742 0.758 0.717 0.720 0.691 0.719 

 

V. CONCLUSION 

Several software fault prediction models have proposed building high quality software with minimal testing 

resources by predicting faults at the early stage of software development. This study presents the combination of three 

different oversampling techniques (VanillaGAN, CTGAN and WGANGP) and four feature selection ranking methods 

(Chi-Squared, Information Gain, Fisher and Relief) to handle feature redundancy and data imbalance problems 

effectively. The experiment was carried out on four datasets extracted from the PROMISE repository. The 

experimental results showed that the performance of SFP models based on combinations of Chi-Squared&CTGAN, 

Information Gain & CTGAN, Fisher&CTGAN and Relief&CTGAN outperformed with the highest average precision, 

recall, F1-score and AUC values. Furthermore, all pairs of four feature selection ranking methods and VanillaGAN, 

CTGAN performance excels in comparison to the SFP models with the full features of datasets. In the future, we plan 

to generalize the findings of the presented work to more wrapper feature selection methods and data sampling 

techniques using more software fault datasets. And we will also examine the comparative performance of the presented 

methods for the cross-project defect prediction.    
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KẾT HỢP CÁC KỸ THUẬT TRÍCH CHỌN ĐẶC TRƯNG VÀ LẤY MẪU  
DỮ LIỆU TRONG DỰ ĐOÁN LỖI PHẦN MỀM  

Hà Thị Minh Phương, Nguyễn Thanh Long, Nguyễn Thanh Bình 

TÓM TẮT: Dự đoán lỗi phần mềm là quy trình xây dựng các mô hình để dự đoán lỗi trong giai đoạn đầu phát triển phần 

mềm. Dự đoán các môđun dễ bị lỗi phần mềm có thể giúp các nhà phát triển phân bổ nguồn lực kiểm thử hiệu quả hơn và tối ưu hóa 

chi phí bảo trì phần mềm. Tuy nhiên, hiệu suất của các mô hình dự đoán lỗi bị ảnh hưởng bởi chất lượng của bộ dữ liệu lỗi phần 

mềm. Các đặc trưng không liên quan và dư thừa của bộ dữ liệu có thể dẫn đến tác động tiêu cực đến tốc độ và độ chính xác của các 

mô hình máy học được áp dụng để huấn luyện. Ngoài ra, sự hiện diện của sự mất cân bằng dữ liệu khiến số lượng môđun bị lỗi ít hơn 

đáng kể so với số lượng môđun không bị lỗi là một thách thức trong dự đoán lỗi. Nghiên cứu này đã áp dụng 3 mô hình Generative 

Adversarial Network (GAN) gồm VanillaGAN, CTGAN và WGANGP cùng với 4 phương pháp lựa chọn đặc trưng như Chi-Squared, 

Information Gain, Fisher và Relief trên 4 bộ dữ liệu lỗi phần mềm. Phân tích so sánh được thực hiện bằng cách sử dụng 4 bộ phân loại 

khác nhau để dự đoán lỗi phần mềm. Chúng tôi lựa chọn các độ đo precision, recall, F1-score and Area Under the ROC (receiver 

operating characteristic curve) Curve (AUC) để đánh giá hiệu suất. Kết quả thử nghiệm cho thấy rằng sự kết hợp của CTGAN, 

VanillaGAN và các phương pháp lựa chọn đặc trưng vượt trội so với các mô hình dự đoán lỗi mà không cần áp dụng các phương pháp 

lấy mẫu dữ liệu và lựa chọn đặc trưng. Cặp kết hợp CTGAN và Relief thể hiện hiệu suất tốt nhất so với các kết hợp khác với giá trị 

trung bình của precision, recall, F1-score AUC cao nhất lần lượt là 0,857, 0,873, 0,856 và 0,767 trên Extra Tree. 


