
Kỷ yếu Hội nghị Khoa học công nghệ Quốc gia lần thứ XVI về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR); Đà Nẵng, ngày 28-29/9/2023
DOI: 10.15625/vap.2023.0046

A COMBINATION OF FEATURE SELECTION AND DATA SAMPLING
TECHNIQUES FOR SOFTWARE FAULT PREDICTION

Ha Thi Minh Phuong1, Nguyen Thanh Long2, Nguyen Thanh Binh3

1,3The University of Danang - Vietnam-Korea University of Information and Communication Technology
2The University of Danang - University of Science and Technology

htmphuong@vku.udn.vn, ngthlo.doc@gmail.com, ntbinh@vku.udn.vn

ABSTRACT: Software fault prediction (SFP) is the process of building models to predict faults in the early stage of

software development. Prediction of software fault-prone modules can help developers allocate testing efforts more effectively and

optimize maintenance cost. However, the performance of SFP models is influenced by the quality of software fault datasets. The

irrelevant and redundant features of datasets may lead to negative impacts on the speed and accuracy of the trained models.

Additionally, the presence of data imbalance that the number of faulty modules is significantly less than the number of non-faulty

modules is the challenge in SFP. The study has applied 3 Generative adversarial networks (GAN) models including VanillaGAN,

CTGAN and WGANGP along with 4 feature selection ranking methods including Chi-Squared, Information Gain, Fisher and Relief

on four software fault datasets. The comparative analysis is performed by using 4 different classifiers to predict software faults. We

have considered precision, recall, F1-score and Area Under the ROC (receiver operating characteristic curve) Curve (AUC) as

performance evaluation metrics. The experimental results reveal that combinations of CTGAN, VanillaGAN and feature selection

approaches outperformed the SFP models without applying data sampling and feature selection methods. The combinational pair of

CTGAN and Relief demonstrated the best performance than other combinations with the highest average precision, recall, F1-score

and AUC values of 0.857, 0.873, 0.856 and 0.767, respectively on Extra Tree.

Keywords: Software fault prediction, Feature selection, Data sampling, Promise.

I. INTRODUCTION

Recently, software systems are growing in both complexity and size, thereby ensuring their reliability and

quality becomes increasingly critical. According to Arar et al. [1], software testing and other software quality activities

account for about 23% of the total software budget. Software faults need to be eliminated to improve software quality

and reduce cost maintenance. Therefore, it would be beneficial to identify potential faults in the early stage of software

development. As a result, software fault prediction techniques are proposed to predict the occurrence of faults and

assist software developers allocate their testing resources effectively [2]. Software fault prediction [3, 4] is the process

of building classification models to predict whether code regions contain faults or not using historical fault data. The

typical fault prediction consists of two phases [5]: extracting code features from source files and developing classifiers

using machine learning and deep learning models for training and testing. Several previous studies in fault prediction

have used manually designed software metrics including Halstead metrics [6], McCabe metrics [7], CK metrics [8],

etc. For the second phase, machine learning models such as Random Forest [9], Logistic Regression [10], Naive Bayes

[11] were applied. However, the performance of software fault prediction models depends on various factors such as

fault datasets, software metrics, machine learning techniques and dataset issues [12]. As shown from several studies

[13-15], most historic fault datasets have issues including redundant, irrelevant features and imbalanced classes that

lead to negative effects on predictive performance. Generally, in the software fault dataset, the number of non-faulty

modules (the majority classes) outnumbers the number of faulty modules (the monitory classes), resulting in

imbalanced classes [15]. This usually causes the machine learning models to give inaccurate results. Consequently, the

problem of data imbalance is the most significant challenge impacting on the SFP’s models and a growing number of

approaches have been proposed to overcome it. Additionally, irrelevant and redundant features also affect the speed

and accuracy of the trained classifiers [16]. Feature selection technique is required for selecting the best subsets of

software metrics to achieve good prediction results [17]. Hence, in this paper, we applied four feature rankings to select

the optimal software metrics/features that are effective to train the SFP models. In addition, another object of our study

is to handle the class imbalance problem which can improve the predictive performance. In order to overcome both the

class imbalance and irrelevant/redundant feature elimination, we conduct the implementation of a combination of three

oversampling methods and four filter-based feature selection techniques to identify the best-performing combination

for SFP models. We have considered precision, recall, Area Under the ROC Curve (AUC) and F1-score performance

metrics to compare the performance of various combinations of feature selection and oversampling techniques. This

paper provides the following contributions:

• The experiment was carried out to examine the combined approach of 20 different combinations of filter-

based feature selection and oversampling techniques (4 feature selection techniques + 1 full metrics)  (3

oversampling techniques + 1 original dataset) on 4 fault datasets extracted from the PROMISE repository [18]

with the employment of different classification algorithms such as Random Forest (RF), Extra Tree (ET),

AdaBoost (AdaBoost), Histogram-based Gradient Boosting (HGB) to draw a conclusion of the best

combinations.

Ha Thi Minh Phuong, Nguyen Thanh Long, Nguyen Thanh Binh 259

• The performance of SFP models was compared with applying feature selection and sampling techniques to

examine the significant effects of these techniques in handling irrelevant/redundant features and class

imbalance.

The paper is structured as follows. Section II introduces related work in software fault prediction field. Section

III provides the details of the experimental design and analysis. The experimental results are presented and discussed in

Section IV. Finally, Section V presents the conclusion of our study.

II. RELATED WORK

In the field of software fault prediction, several studies have been done on investigating feature selection and

sampling methods independently [19]. Nevendra et al. [20] proposed a new approach called AdaBoost.ET which

developed boosting and bagging-based learners to improve the prediction rate. Mangla et al. [21] presented a

sequential model to predict software faults on the 8 datasets extracted from the PROMISE and ECLIPSE repositories.

The proposed approaches have built software fault prediction models based on software metrics. Jureczko [22]

conducted a review of the effectiveness of various software metrics and evaluated the correlation between the software

faults and metrics. They analyzed several CK metrics such as Depth of Inheritance Tree (DIT), Coupling between

object classes (CBO), Weighted Methods per Class (WMC), Number of Children (NOC), etc. However, feature

redundancy has affected on the speed and accuracy of SFP models, hence, several literature reviews showed feature

selection is an important stage that leads to better performance of classifiers [23]. The aim of feature selection is to

select the optimal set of metrics for optimizing the performance of SFP models. Thus, in this paper, we have applied

four filter-based feature selection techniques over 4 datasets to generate the best software metrics that are useful for

trained models. Additionally, the input datasets are usually imbalanced with the number of non-faulty classes (majority

classes) significantly greater than the number of faulty classes (monitory classes). In this case, machine learning

models may not learn sufficient data for faulty classes to produce reliable results. However, there are few studies that

have been conducted to address both feature redundancy and class imbalance problems [12, 24]. Based on the above

discussion, it is observed that there is a need for in-depth research to evaluate the performance of SFP models by

combining sampling and feature selection techniques. Therefore, for the motivation of this study, we exploited the

implication of 3 sampling strategies (VanillaGAN, CTGAN, WGANGP) and 4 feature selection techniques (Relief,

Info gain, Fisher and Chi-squared) to tackle the class imbalance and feature redundancy problem. The performance of

the developed SFP model is analyzed using precision, recall and F1-score evaluation metrics developed with the

implication of sampling and feature selection techniques.

III. METHODOLOGY

In this paper, our objective is to determine the best sets of software metrics and handle imbalanced classes for

building effective SFP models with high prediction performance. The steps of the proposed experimental methodology

are shown in Figure 1. Overview of the proposed methodologyFirstly, we collected four fault datasets, namely CM1,

KC1, KC2 and PC1 from the PROMISE repository. We applied data normalization using the z-normalization technique

for pre-preprocessing stage. The normalized datasets are split into training and test sets. After applying three GAN

oversampling models including VanillaGAN, CTGAN and WGANGP to balance training datasets, we utilized four

filter-based feature selections, namely Chi-Squared, Information Gain, Fisher and Relief to extract the top log2N

features (N - the total number of software metrics in the full fault datasets). The balanced training datasets with optimal

features were trained on Random Forest (RF), Extra Tree (ET), AdaBoost (AB) and HistGradientBoosting (HG). The

test sets are then fed to SFP models for comparing to the performance of these models using combinations of feature

selection and data sampling techniques in terms of precision, recall, F1-score and AUC. The following sections

indicate in detail software fault dataset, filter-based feature selection, GAN oversampling techniques and performance

evaluation measures.

A. Datasets

In this study, we have used 4 different datasets extracted from the PROMISE repository which are widely used

in many studies [19, 20]. In terms of software fault prediction, each dataset contains the independent variables which

are source code metrics such as Line of Code (LOC), Depth of Inheritance Tree (DIT), etc... and the dependent variable

is faulty or non-faulty module. The detailed datasets are shown in Table 1. Description of the used software fault

datasets.

Table 1. Description of the used software fault datasets

Dataset Release Instances Metrics Faulty

Instances

Imbalanced

Ratio (%)

PROMISE CM1 498 21 48 9.7

 KC1 2107 21 325 15.4

 KC2 522 21 107 20.5

 PC1 1107 21 76 6.9

260 A COMBINATION OF FEATURE SELECTION AND DATA SAMPLING TECHNIQUES FOR SOFTWARE FAULT PREDICTION

Figure 1. Overview of the proposed methodology

B. Filter-based feature selection

The filter methods use ranking techniques to score the features and a threshold is utilized to eliminate features

below the threshold. The ranking techniques are applied before the classification stage to filter out the

redundant/irrelevant features [17]. The feature selection ranking methods used in this study are Chi-Squared,

Information Gain, Fisher and Relief which select optimal software metrics. While Chi-Squared is used to rank features

according to significance, Information Gain is an entropy-based which is calculated by comparing the entropy of the

dataset before and after splitting on features. The aim of Relief is to distinguish between instances of different classes

by estimating the importance or relevance of each feature. The Fisher score is derived from Fisher’s criterion, which

seeks to maximize the distance between the class means while minimizing the variance within each class [27].

C. Data oversampling

VanilaGAN is the simplest version of GAN. The generator network leans the probability of the training set by

mapping the noise z which is drawn independent and identically distributed from N (0, 0.01) and added to both real and

synthetic data to the probability distribution of training samples. Then, synthetic samples that are closer to real samples

were generated by the generator network. It uses backpropagation to train both models. In VanillaGAN, we use neural

networks to approximate complex, high-dimensional distributions for both generator and discriminator. The

discriminator training is done by minimizing its prediction error, whereas the generator is trained by maximizing the

prediction error by the discriminator. This can be formalized as follows:

𝑚𝑖𝑛(⊝𝐺𝑒𝑛)𝑚𝑎𝑥(⊝𝐷𝑖𝑠) (𝐸𝑥∼𝑝𝐷
[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥)] + 𝐸𝑧∼𝑝𝑧

[log (1 − 𝐷𝑖𝑠(𝐺𝑒𝑛(𝑧)))]) (1)

where 𝑝𝐷 is the real data distribution, 𝑝𝑧 is the prior distribution of the generative network and ⊝ 𝐺𝑒𝑛 and ⊝ 𝐷𝑖𝑠 are

the parameters of the generator (Gen) and discriminator (Dis). Given a strong discriminator, the generator’s goal is

achieved if 𝑝𝐷, the generator’s distribution over x, equals 𝑝𝑧, the real distribution, which means that the Jensen-

Shannon Divergence (JSD) is minimized.

WGANGP is short for Wasserstein GAN with Gradient Penalty, a variant of GAN. WGAN (Wasserstein GAN)

helps to tackle issue of VanillaGAN that guarantees the model will converge at equilibrium. However, WGAN faces a

vanishing gradient problem. Therefore, WGANGP was proposed to solve gradient vanishing, or exploding problems

that were there in WGAN by using a gradient penalty instead of the weight-clipping. The GAN objective is defined as

follows:

𝑚𝑖𝑛(⊝𝐺𝑒𝑛)𝑚𝑎𝑥(⊝𝐷𝑖𝑠)(𝐸𝑥∼𝑝𝐷
[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥)] − 𝐸𝑧∼𝑝𝑧

[𝐷𝑖𝑠(𝐺𝑒𝑛(𝑧))]) − ⋋ 𝐸𝑥∼𝑝𝑥
[(||∇𝑥(𝑥̂)| |2 − 1)2] (2)

where ⋋ is the penalty coefficient. WGANGP uses a two-sided penalty based on empirical evidence that penalizes

gradients with a norm less than 1. The gradient penalty serves as a regularizer, ensuring that a discriminator that has

been trained to perfection has a smooth linear gradient that guides the generator to the data distribution while

restricting the discriminator’s power.

CTGAN is a GAN-based data synthesizer for single table data, which is able to learn from real data and

generates synthetic data with high fidelity. Unlike the above two variations of GAN, CTGAN uses mode-specific

normalization instead of min-max normalization for continuous columns. The mode-specific normalization technique is

leveraged to deal with columns that contain non-Gaussian and multimodal distributions. For each continuous column,

Ha Thi Minh Phuong, Nguyen Thanh Long, Nguyen Thanh Binh 261

CTGAN uses a variational Gaussian mixture model (VGM) to predict the number of modes and fit a Gaussian mixture

(GM).

D. Performance evaluation measures

In order to evaluate the performance feature selection ranking and data oversampling techniques, we considered

evaluation metrics such as precision, recall, F1-score and AUC. Table 2. Confusion matrix presents a confusion matrix

for two-class classifiers.
Table 2. Confusion matrix

Actual Predicted

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

• Precision: the ratio of positive instances from the total predicted positive instances.

• Recall: known as sensitive, it presents the ratio of positive instances and the total actual positive instances.

• F1-score: the harmonic mean of recall and precision.

• AUC: is a summary of the ROC (the Receiver Operating Curve) that evaluates the ability of a classifier to

distinguish between classes.

IV. EXPERIMENTAL RESULTS

This section illustrates the experimental results on four fault datasets to evaluate the performance of combined

techniques (filter-based feature selection and oversampling). As mentioned previously, 3 different oversampling

methods are employed to balance 4 datasets with software metrics and 4 filter-based feature selection techniques have

been applied to overcome the redundancy problem. The performance of SFP models with oversampling and feature

selection techniques based on the selected and full software metrics is shown in Tables 4-7. The average performance

of four classifiers (RF, ET, AB and HGB) was also computed in each table to examine the effectiveness of feature

selection and data sampling in SFP in terms of precision, recall, F1-score and AUC. As shown in Tables 4-7, it is

observed that the performance of the predictive models based on a combination of 4 filter-based feature selection and 2

oversampling methods (VanillaGAN and CTGAN) was better than when no feature selection and data sampling are

utilized (as shown in Table 3). For instance, the average AUC values of the SFP model on the original datasets are

0.690, 0.711, 0.719 and 0.733 with the RF, ET, AB, and HGB model, respectively.

Table 3. Results of the SFP models without data sampling and feature selection

Dataset Performance

Measures RF ET AB HGB

CM1 Precision 0.511 0.580 0.589 0.577

 Recall 0.502 0.556 0.561 0.542

 F1-score 0.502 0.563 0.567 0.546

 AUC 0.634 0.623 0.703 0.718

KC1 Precision 0.719 0.707 0.689 0.714

 Recall 0.579 0.623 0.609 0.640

 F1-score 0.596 0.645 0.630 0.663

 AUC 0.702 0.710 0.723 0.728

KC2 Precision 0.726 0.694 0.702 0.725

 Recall 0.665 0.646 0.671 0.678

 F1-score 0.684 0.660 0.683 0.695

 AUC 0.701 0.724 0.707 0.721

PC1 Precision 0.763 0.730 0.653 0.714

 Recall 0.594 0.593 0.616 0.620

 F1-score 0.629 0.624 0.629 0.649

 AUC 0.726 0.788 0.746 0.766

Average

 Precision 0.679 0.677 0.658 0.682

 Recall 0.585 0.605 0.614 0.620

 F1-score 0.603 0.623 0.627 0.638

 AUC 0.690 0.711 0.719 0.733

When comparing the average values of the combinational pairs of filter-based feature selection and sampling

techniques in Table 4, a combination of Chi-Squared and CTGAN exhibited the greatest value for all performance

measures, followed by pair of Chi-Squared and VanillaGAN. In particular, the average results of these pairs gained the

highest results for precision, recall, F1-score and AUC with 0.848, 0.867, 0.851 and 0.771, respectively. As shown in

Table 5, it can be seen that the combination of Information Gain and CTGAN performed the best precision, recall and

F1-score on the PC1, with the highest values of 0.924, 0.932 and 0.925. Again, the pair of Information Gain and

CTGAN on Extra Tree also obtained the best average results for precision, recall and F1-score values of 0.849, 0.867

and 0.852. As the results of Table 6, it is evident that the combination of Fisher and CTGAN outperformed other

262 A COMBINATION OF FEATURE SELECTION AND DATA SAMPLING TECHNIQUES FOR SOFTWARE FAULT PREDICTION

models for all performance measures on most datasets. For instance, it achieved the highest values of precision, recall

and F1-score with 0.925, 0.935 and 0.925, respectively. As depicted in Table 7. Results of the Relief&GAN methods,

we observed that Relief and CTGAN achieved a better performance than other combinations of filter-based feature

selection and oversampling techniques with the highest average precision, recall, F1-score and AUC values of 0.857,

0.873, 0.856 and 0.767, respectively on Extra Tree.
Table 4. Results of the Chi-Squared & GAN methods

Dataset Performance

Evaluation

Chi-Squared

VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.826 0.856 0.843 0.849 0.843 0.856 0.854 0.837 0.834 0.819 0.828 0.821

 Recall 0.712 0.824 0.780 0.810 0.860 0.878 0.848 0.846 0.804 0.832 0.726 0.816

 F1-score 0.758 0.834 0.806 0.827 0.849 0.861 0.849 0.840 0.816 0.824 0.766 0.817

 AUC 0.635 0.739 0.679 0.706 0.675 0.739 0.723 0.690 0.643 0.657 0.574 0.679

KC1 Precision 0.809 0.816 0.807 0.823 0.817 0.827 0.813 0.825 0.804 0.804 0.797 0.808

 Recall 0.759 0.826 0.802 0.831 0.845 0.848 0.841 0.850 0.814 0.808 0.815 0.802

 F1-score 0.778 0.820 0.804 0.826 0.820 0.830 0.817 0.830 0.803 0.802 0.801 0.799

 AUC 0.752 0.794 0.753 0.780 0.793 0.793 0.745 0.781 0.755 0.734 0.647 0.734

KC2 Precision 0.815 0.785 0.795 0.788 0.798 0.785 0.786 0.787 0.809 0.813 0.807 0.825

 Recall 0.809 0.798 0.798 0.796 0.815 0.806 0.8 0.806 0.638 0.672 0.657 0.668

 F1-score 0.811 0.788 0.794 0.788 0.792 0.788 0.788 0.791 0.665 0.698 0.682 0.693

 AUC 0.777 0.783 0.701 0.773 0.785 0.775 0.658 0.762 0.753 0.799 0.744 0.761

PC1 Precision 0.899 0.919 0.919 0.916 0.877 0.925 0.913 0.930 0.884 0.911 0.887 0.891

 Recall 0.824 0.916 0.907 0.916 0.922 0.935 0.921 0.938 0.817 0.814 0.682 0.823

 F1-score 0.854 0.917 0.911 0.915 0.897 0.925 0.916 0.929 0.837 0.836 0.739 0.844

 AUC 0.780 0.784 0.839 0.826 0.724 0.775 0.838 0.802 0.681 0.698 0.616 0.663

 Average

 Precision 0.837 0.844 0.841 0.844 0.833 0.848 0.841 0.845 0.833 0.837 0.830 0.836

 Recall 0.776 0.841 0.822 0.838 0.860 0.867 0.852 0.860 0.768 0.781 0.720 0.777

 F1-score 0.800 0.840 0.829 0.839 0.839 0.851 0.842 0.847 0.780 0.790 0.747 0.788

 AUC 0.736 0.775 0.743 0.771 0.744 0.771 0.741 0.759 0.708 0.722 0.645 0.709

Table 5. Results of the Information Gain&GAN methods

Dataset Performance

Evaluation

Information Gain

VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.853 0.853 0.843 0.844 0.832 0.863 0.864 0.832 0.834 0.823 0.827 0.820

 Recall 0.722 0.840 0.790 0.812 0.870 0.888 0.866 0.850 0.858 0.852 0.782 0.790

 F1-score 0.769 0.843 0.812 0.826 0.847 0.865 0.861 0.839 0.844 0.836 0.801 0.802

 AUC 0.671 0.695 0.644 0.658 0.671 0.695 0.662 0.627 0.633 0.63 0.621 0.638

KC1 Precision 0.797 0.808 0.811 0.808 0.815 0.807 0.810 0.809 0.814 0.795 0.804 0.802

 Recall 0.836 0.830 0.841 0.832 0.845 0.832 0.840 0.836 0.827 0.796 0.807 0.789

 F1-score 0.801 0.815 0.818 0.816 0.822 0.815 0.814 0.817 0.817 0.792 0.804 0.793

 AUC 0.765 0.784 0.735 0.761 0.773 0.778 0.737 0.754 0.763 0.725 0.664 0.725

KC2 Precision 0.803 0.807 0.791 0.811 0.821 0.803 0.776 0.794 0.798 0.804 0.813 0.812

 Recall 0.804 0.815 0.791 0.813 0.825 0.815 0.787 0.808 0.64 0.643 0.628 0.634

 F1-score 0.800 0.807 0.789 0.807 0.807 0.801 0.778 0.796 0.661 0.668 0.655 0.657

 AUC 0.777 0.791 0.726 0.792 0.812 0.788 0.651 0.783 0.765 0.788 0.737 0.767

PC1 Precision 0.893 0.918 0.899 0.907 0.881 0.924 0.909 0.911 0.879 0.890 0.878 0.889

 Recall 0.892 0.915 0.907 0.917 0.919 0.932 0.922 0.922 0.799 0.877 0.818 0.858

 F1-score 0.891 0.915 0.902 0.911 0.897 0.925 0.913 0.914 0.829 0.876 0.838 0.866

 AUC 0.772 0.755 0.757 0.797 0.689 0.747 0.781 0.780 0.649 0.663 0.559 0.698

 Average

 Precision 0.836 0.846 0.836 0.843 0.837 0.849 0.840 0.836 0.831 0.828 0.830 0.830

 Recall 0.813 0.850 0.832 0.844 0.864 0.867 0.854 0.854 0.781 0.792 0.759 0.768

 F1-score 0.816 0.845 0.830 0.840 0.843 0.852 0.842 0.842 0.788 0.793 0.775 0.780

 AUC 0.746 0.753 0.716 0.752 0.736 0.753 0.708 0.736 0.702 0.702 0.645 0.707

However, the combinations of each feature selection technique (Chi-Squared, Information Gain, Fisher, Relief)

and WGAN produced the same performance when no feature selection and data sampling techniques were applied.

When comparing the performance of the WGANP method with the AdaBoost technique, we found that the average

AUC values of Chi-Squared, Information Gain, Fisher and Relief had the lowest AUC values with 0.645, 0.645, 0.666

and 0.691 respectively as shown in Tables 4-7.

Ha Thi Minh Phuong, Nguyen Thanh Long, Nguyen Thanh Binh 263

Table 6. Results of the Fisher&GAN methods

Dataset Performance

Evaluation

Fisher

VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.833 0.842 0.836 0.828 0.845 0.837 0.836 0.840 0.818 0.814 0.828 HgB

 Recall 0.674 0.838 0.766 0.794 0.850 0.866 0.816 0.852 0.788 0.852 0.746 0.832

 F1-score 0.734 0.839 0.794 0.810 0.844 0.848 0.824 0.845 0.799 0.832 0.778 0.820

 AUC 0.632 0.678 0.615 0.689 0.670 0.707 0.619 0.659 0.613 0.653 0.637 0.824

KC1 Precision 0.809 0.827 0.813 0.828 0.818 0.833 0.813 0.829 0.803 0.800 0.806 0.708

 Recall 0.785 0.839 0.834 0.844 0.843 0.855 0.839 0.851 0.800 0.792 0.783 0.805

 F1-score 0.794 0.832 0.819 0.833 0.823 0.836 0.819 0.835 0.798 0.795 0.793 0.773

 AUC 0.763 0.798 0.749 0.770 0.783 0.798 0.748 0.778 0.755 0.747 0.686 0.785

KC2 Precision 0.795 0.810 0.794 0.825 0.784 0.792 0.795 0.794 0.818 0.827 0.806 0.755

 Recall 0.783 0.811 0.794 0.830 0.8 0.811 0.809 0.815 0.675 0.664 0.628 0.829

 F1-score 0.787 0.808 0.793 0.826 0.778 0.793 0.799 0.799 0.700 0.690 0.649 0.674

 AUC 0.774 0.793 0.708 0.763 0.781 0.787 0.666 0.761 0.724 0.803 0.728 0.699

PC1 Precision 0.902 0.919 0.927 0.920 0.893 0.930 0.925 0.935 0.890 0.903 0.880 0.732

 Recall 0.900 0.93 0.932 0.926 0.914 0.939 0.932 0.942 0.846 0.877 0.732 0.896

 F1-score 0.900 0.922 0.926 0.922 0.899 0.932 0.927 0.935 0.865 0.883 0.785 0.851

 AUC 0.867 0.808 0.817 0.889 0.749 0.816 0.867 0.879 0.700 0.732 0.611 0.868

 Average

 Precision 0.835 0.848 0.842 0.850 0.835 0.848 0.842 0.849 0.832 0.836 0.830 0.840

 Recall 0.786 0.855 0.832 0.849 0.852 0.867 0.849 0.865 0.777 0.796 0.722 0.780

 F1-score 0.804 0.850 0.833 0.848 0.836 0.852 0.842 0.853 0.790 0.800 0.751 0.794

 AUC 0.759 0.769 0.722 0.778 0.746 0.776 0.725 0.769 0.698 0.734 0.666 0.733

Table 7. Results of the Relief&GAN methods

Dataset Performance

Evaluation

Relief

VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.845 0.848 0.843 0.835 0.824 0.872 0.855 0.844 0.829 0.834 0.839 0.831

 Recall 0.696 0.808 0.784 0.788 0.866 0.890 0.860 0.866 0.828 0.864 0.752 0.814

 F1-score 0.75 0.824 0.807 0.807 0.844 0.868 0.856 0.851 0.827 0.848 0.787 0.821

 AUC 0.647 0.716 0.672 0.673 0.676 0.711 0.716 0.670 0.648 0.637 0.661 0.690

KC1 Precision 0.815 0.824 0.811 0.827 0.815 0.833 0.825 0.843 0.815 0.821 0.816 0.824

 Recall 0.781 0.838 0.833 0.845 0.844 0.854 0.85 0.861 0.811 0.806 0.782 0.800

 F1-score 0.793 0.829 0.819 0.833 0.821 0.836 0.828 0.847 0.810 0.807 0.792 0.805

 AUC 0.773 0.798 0.737 0.776 0.788 0.797 0.757 0.788 0.759 0.746 0.720 0.740

KC2 Precision 0.811 0.789 0.789 0.798 0.781 0.802 0.785 0.789 0.816 0.809 0.797 0.812

 Recall 0.794 0.804 0.791 0.804 0.804 0.817 0.798 0.806 0.658 0.651 0.609 0.642

 F1-score 0.800 0.793 0.788 0.799 0.78 0.800 0.789 0.792 0.682 0.675 0.634 0.665

 AUC 0.796 0.789 0.705 0.772 0.781 0.783 0.652 0.772 0.780 0.791 0.738 0.760

PC1 Precision 0.900 0.913 0.916 0.915 0.871 0.922 0.914 0.929 0.893 0.902 0.893 0.898

 Recall 0.859 0.917 0.905 0.913 0.914 0.932 0.921 0.937 0.794 0.770 0.695 0.759

 F1-score 0.873 0.914 0.909 0.912 0.89 0.921 0.915 0.928 0.823 0.798 0.747 0.800

 AUC 0.782 0.783 0.839 0.814 0.691 0.775 0.841 0.802 0.680 0.707 0.646 0.685

 Average

 Precision 0.843 0.843 0.840 0.844 0.822 0.857 0.845 0.851 0.838 0.841 0.836 0.841

 Recall 0.783 0.842 0.828 0.837 0.857 0.873 0.857 0.867 0.773 0.773 0.710 0.753

 F1-score 0.804 0.840 0.831 0.838 0.834 0.856 0.847 0.855 0.785 0.782 0.740 0.773

 AUC 0.757 0.767 0.738 0.759 0.734 0.767 0.742 0.758 0.717 0.720 0.691 0.719

V. CONCLUSION

Several software fault prediction models have proposed building high quality software with minimal testing

resources by predicting faults at the early stage of software development. This study presents the combination of three

different oversampling techniques (VanillaGAN, CTGAN and WGANGP) and four feature selection ranking methods

(Chi-Squared, Information Gain, Fisher and Relief) to handle feature redundancy and data imbalance problems

effectively. The experiment was carried out on four datasets extracted from the PROMISE repository. The

experimental results showed that the performance of SFP models based on combinations of Chi-Squared&CTGAN,

Information Gain & CTGAN, Fisher&CTGAN and Relief&CTGAN outperformed with the highest average precision,

recall, F1-score and AUC values. Furthermore, all pairs of four feature selection ranking methods and VanillaGAN,

CTGAN performance excels in comparison to the SFP models with the full features of datasets. In the future, we plan

to generalize the findings of the presented work to more wrapper feature selection methods and data sampling

techniques using more software fault datasets. And we will also examine the comparative performance of the presented

methods for the cross-project defect prediction.

264 A COMBINATION OF FEATURE SELECTION AND DATA SAMPLING TECHNIQUES FOR SOFTWARE FAULT PREDICTION

ACKNOWLEDGEMENTS

This research is funded by Funds for Science and Technology Development of the University of Danang under

project number B2022-DN07-02.

REFERENCES

[1] O.F. Arar, K. Ayan, “Software defect prediction using cost-sensitive neural network,” Applied Soft Computing, 33, 263-277

(2015).

[2] T. Menzies, et al., “Defect prediction from static code features: current results, limitations, new approaches,” Automated

Software Engineering, 17, 375-407 (2010).

[3] J. Nam, “Survey on software defect prediction,” Department of Compter Science and Engineerning, The Hong Kong University

of Science and Technology, Tech. Rep (2014).

[4] M. Tan, et al., “Online defect prediction for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 2, pp. 99-108 (2015). IEEE.

[5] M.R. Lyu, et al., “Handbook of Software Reliability Engineering,” IEEE computer society press Los Alamitos, vol. 222.

[6] M.H. Halstead, Elements of Software Science (Operating and Programming Systems Series). Elsevier Science Inc., (1977).

[7] T.J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering, (4), 308-320 (1976).

[8] S.R. Chidamber, C.F. Kemerer, “A metrics suite for object-oriented design,” IEEE Transactions on software engineering 20(6),

476-493 (1994).

[9] K.E. Bennin, et al., “Empirical evaluation of cross-release effort-aware defect prediction models,” in 2016 IEEE International

Conference on Software Quality, Reliability and Security (QRS), pp. 214-221 (2016).

[10] S. Lessmann, et al., “Benchmarking classification models for software defect prediction: A proposed framework and novel

findings,” IEEE transactions on software engineering, 34(4), 485-496 (2008).

[11] T. Menzies, et al., “Data mining static code attributes to learn defect predictors,” IEEE transactions on software engineering,

33(1), 2-13 (2006).

[12] S.K. Pandey, et al., “Machine learning based methods for software fault prediction: A survey,” Expert Systems with

Applications, 172, 114595 (2021).

[13] S. Huda, et al., “An ensemble oversampling model for class imbalance problem in software defect prediction,” IEEE access 6,

24184-24195 (2018).

[14] A. Balaram, et al., “Prediction of software fault-prone classes using ensemble random forest with adaptive synthetic sampling

algorithm,” Automated Software Engineering, 29(1), 6 (2022).

[15] S.S. Rathore, et al., “Generative oversampling methods for handling imbalanced data in software fault prediction,” IEEE

Transactions on Reliability, 71(2), 747-762 (2022).

[16] Z. Cui, et al., “Improving software fault localization by combining spectrum and mutation,” IEEE Access 8, 172296-172307

(2020).

[17] G. Chandrashekar, F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, 40(1), 16-28

(2014).

[18] http://promise.site.uottawa.ca/SERepository/datasets-page.html

[19] S.C. Rathi, et al., “Empirical evaluation of the performance of data sampling and feature selection techniques for software fault

prediction,” Expert Systems with Applications, 223, 119806 (2023).

[20] M. Nevendra, P. Singh, “Software defect prediction by strong machine learning classifier,” Intelligent Computing and

Communication Systems, 321-329 (2021).

[21] M. Mangla, N. Sharma, “A sequential ensemble model for software fault prediction,” Innovations in Systems and Software

Engineering, 1-8 (2021).

[22] M. Jureczko, “Significance of different software metrics in defect prediction,” Software Engineering: An International Journal,

1(1), 86-95 (2011).

[23] S.S. Rathore, A. Gupta, “A comparative study of feature-ranking and featuresubset selection techniques for improved fault

prediction,” in Proceedings of the 7th India Software Engineering Conference, pp. 1-10 (2014).

[24] A. Joon, R.K. Tyagi, K. Kumar, “Noise filtering and imbalance class distribution removal for optimizing software fault

prediction using best software metrics suite,” in 2020 5th International Conference on Communication and Electronics Systems

(ICCES), pp. 1381-1389 (2020). IEEE.

[25] C. Manjula, L. Florence, “Deep neural network based hybrid approach for software defect prediction using software metrics,”

Cluster Computing, 22(Suppl 4), 9847-9863 (2019).

[26] S. Mehta, K.S. Patnaik, “Improved prediction of software defects using ensemble machine learning techniques,” Neural

Computing and Applications, 33, 10551- 10562 (2021).

[27] P.N. Tan, et al., Introduction to Data Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., USA (2005).

http://promise.site.uottawa.ca/SERepository/datasets-page.html

Ha Thi Minh Phuong, Nguyen Thanh Long, Nguyen Thanh Binh 265

KẾT HỢP CÁC KỸ THUẬT TRÍCH CHỌN ĐẶC TRƯNG VÀ LẤY MẪU
DỮ LIỆU TRONG DỰ ĐOÁN LỖI PHẦN MỀM

Hà Thị Minh Phương, Nguyễn Thanh Long, Nguyễn Thanh Bình

TÓM TẮT: Dự đoán lỗi phần mềm là quy trình xây dựng các mô hình để dự đoán lỗi trong giai đoạn đầu phát triển phần

mềm. Dự đoán các môđun dễ bị lỗi phần mềm có thể giúp các nhà phát triển phân bổ nguồn lực kiểm thử hiệu quả hơn và tối ưu hóa

chi phí bảo trì phần mềm. Tuy nhiên, hiệu suất của các mô hình dự đoán lỗi bị ảnh hưởng bởi chất lượng của bộ dữ liệu lỗi phần

mềm. Các đặc trưng không liên quan và dư thừa của bộ dữ liệu có thể dẫn đến tác động tiêu cực đến tốc độ và độ chính xác của các

mô hình máy học được áp dụng để huấn luyện. Ngoài ra, sự hiện diện của sự mất cân bằng dữ liệu khiến số lượng môđun bị lỗi ít hơn

đáng kể so với số lượng môđun không bị lỗi là một thách thức trong dự đoán lỗi. Nghiên cứu này đã áp dụng 3 mô hình Generative

Adversarial Network (GAN) gồm VanillaGAN, CTGAN và WGANGP cùng với 4 phương pháp lựa chọn đặc trưng như Chi-Squared,

Information Gain, Fisher và Relief trên 4 bộ dữ liệu lỗi phần mềm. Phân tích so sánh được thực hiện bằng cách sử dụng 4 bộ phân loại

khác nhau để dự đoán lỗi phần mềm. Chúng tôi lựa chọn các độ đo precision, recall, F1-score and Area Under the ROC (receiver

operating characteristic curve) Curve (AUC) để đánh giá hiệu suất. Kết quả thử nghiệm cho thấy rằng sự kết hợp của CTGAN,

VanillaGAN và các phương pháp lựa chọn đặc trưng vượt trội so với các mô hình dự đoán lỗi mà không cần áp dụng các phương pháp

lấy mẫu dữ liệu và lựa chọn đặc trưng. Cặp kết hợp CTGAN và Relief thể hiện hiệu suất tốt nhất so với các kết hợp khác với giá trị

trung bình của precision, recall, F1-score AUC cao nhất lần lượt là 0,857, 0,873, 0,856 và 0,767 trên Extra Tree.

