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ABSTRACT: Software fault prediction (SFP) is the process of building models to predict faults in the early stage of
software development. Prediction of software fault-prone modules can help developers allocate testing efforts more effectively and
optimize maintenance cost. However, the performance of SFP models is influenced by the quality of software fault datasets. The
irrelevant and redundant features of datasets may lead to negative impacts on the speed and accuracy of the trained models.
Additionally, the presence of data imbalance that the number of faulty modules is significantly less than the number of non-faulty
modules is the challenge in SFP. The study has applied 3 Generative adversarial networks (GAN) models including VanillaGAN,
CTGAN and WGANGP along with 4 feature selection ranking methods including Chi-Squared, Information Gain, Fisher and Relief
on four software fault datasets. The comparative analysis is performed by using 4 different classifiers to predict software faults. We
have considered precision, recall, F1-score and Area Under the ROC (receiver operating characteristic curve) Curve (AUC) as
performance evaluation metrics. The experimental results reveal that combinations of CTGAN, VanillaGAN and feature selection
approaches outperformed the SFP models without applying data sampling and feature selection methods. The combinational pair of
CTGAN and Relief demonstrated the best performance than other combinations with the highest average precision, recall, F1-score
and AUC values of 0.857, 0.873, 0.856 and 0.767, respectively on Extra Tree.
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I. INTRODUCTION

Recently, software systems are growing in both complexity and size, thereby ensuring their reliability and
quality becomes increasingly critical. According to Arar et al. [1], software testing and other software quality activities
account for about 23% of the total software budget. Software faults need to be eliminated to improve software quality
and reduce cost maintenance. Therefore, it would be beneficial to identify potential faults in the early stage of software
development. As a result, software fault prediction techniques are proposed to predict the occurrence of faults and
assist software developers allocate their testing resources effectively [2]. Software fault prediction [3, 4] is the process
of building classification models to predict whether code regions contain faults or not using historical fault data. The
typical fault prediction consists of two phases [5]: extracting code features from source files and developing classifiers
using machine learning and deep learning models for training and testing. Several previous studies in fault prediction
have used manually designed software metrics including Halstead metrics [6], McCabe metrics [7], CK metrics [8],
etc. For the second phase, machine learning models such as Random Forest [9], Logistic Regression [10], Naive Bayes
[11] were applied. However, the performance of software fault prediction models depends on various factors such as
fault datasets, software metrics, machine learning techniques and dataset issues [12]. As shown from several studies
[13-15], most historic fault datasets have issues including redundant, irrelevant features and imbalanced classes that
lead to negative effects on predictive performance. Generally, in the software fault dataset, the number of non-faulty
modules (the majority classes) outnumbers the number of faulty modules (the monitory classes), resulting in
imbalanced classes [15]. This usually causes the machine learning models to give inaccurate results. Consequently, the
problem of data imbalance is the most significant challenge impacting on the SFP’s models and a growing number of
approaches have been proposed to overcome it. Additionally, irrelevant and redundant features also affect the speed
and accuracy of the trained classifiers [16]. Feature selection technique is required for selecting the best subsets of
software metrics to achieve good prediction results [17]. Hence, in this paper, we applied four feature rankings to select
the optimal software metrics/features that are effective to train the SFP models. In addition, another object of our study
is to handle the class imbalance problem which can improve the predictive performance. In order to overcome both the
class imbalance and irrelevant/redundant feature elimination, we conduct the implementation of a combination of three
oversampling methods and four filter-based feature selection techniques to identify the best-performing combination
for SFP models. We have considered precision, recall, Area Under the ROC Curve (AUC) and F1-score performance
metrics to compare the performance of various combinations of feature selection and oversampling techniques. This
paper provides the following contributions:

e The experiment was carried out to examine the combined approach of 20 different combinations of filter-
based feature selection and oversampling techniques (4 feature selection techniques + 1 full metrics) x (3
oversampling techniques + 1 original dataset) on 4 fault datasets extracted from the PROMISE repository [18]
with the employment of different classification algorithms such as Random Forest (RF), Extra Tree (ET),
AdaBoost (AdaBoost), Histogram-based Gradient Boosting (HGB) to draw a conclusion of the best
combinations.
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e The performance of SFP models was compared with applying feature selection and sampling techniques to
examine the significant effects of these techniques in handling irrelevant/redundant features and class
imbalance.

The paper is structured as follows. Section Il introduces related work in software fault prediction field. Section
111 provides the details of the experimental design and analysis. The experimental results are presented and discussed in
Section 1V. Finally, Section V presents the conclusion of our study.

Il. RELATED WORK

In the field of software fault prediction, several studies have been done on investigating feature selection and
sampling methods independently [19]. Nevendra et al. [20] proposed a new approach called AdaBoost.ET which
developed boosting and bagging-based learners to improve the prediction rate. Mangla et al. [21] presented a
sequential model to predict software faults on the 8 datasets extracted from the PROMISE and ECLIPSE repositories.
The proposed approaches have built software fault prediction models based on software metrics. Jureczko [22]
conducted a review of the effectiveness of various software metrics and evaluated the correlation between the software
faults and metrics. They analyzed several CK metrics such as Depth of Inheritance Tree (DIT), Coupling between
object classes (CBO), Weighted Methods per Class (WMC), Number of Children (NOC), etc. However, feature
redundancy has affected on the speed and accuracy of SFP models, hence, several literature reviews showed feature
selection is an important stage that leads to better performance of classifiers [23]. The aim of feature selection is to
select the optimal set of metrics for optimizing the performance of SFP models. Thus, in this paper, we have applied
four filter-based feature selection techniques over 4 datasets to generate the best software metrics that are useful for
trained models. Additionally, the input datasets are usually imbalanced with the number of non-faulty classes (majority
classes) significantly greater than the number of faulty classes (monitory classes). In this case, machine learning
models may not learn sufficient data for faulty classes to produce reliable results. However, there are few studies that
have been conducted to address both feature redundancy and class imbalance problems [12, 24]. Based on the above
discussion, it is observed that there is a need for in-depth research to evaluate the performance of SFP models by
combining sampling and feature selection techniques. Therefore, for the motivation of this study, we exploited the
implication of 3 sampling strategies (VanillaGAN, CTGAN, WGANGP) and 4 feature selection techniques (Relief,
Info gain, Fisher and Chi-squared) to tackle the class imbalance and feature redundancy problem. The performance of
the developed SFP model is analyzed using precision, recall and Fl-score evaluation metrics developed with the
implication of sampling and feature selection techniques.

I11. METHODOLOGY

In this paper, our objective is to determine the best sets of software metrics and handle imbalanced classes for
building effective SFP models with high prediction performance. The steps of the proposed experimental methodology
are shown in Figure 1. Overview of the proposed methodologyFirstly, we collected four fault datasets, namely CM1,
KC1, KC2 and PC1 from the PROMISE repository. We applied data normalization using the z-normalization technique
for pre-preprocessing stage. The normalized datasets are split into training and test sets. After applying three GAN
oversampling models including VanillaGAN, CTGAN and WGANGP to balance training datasets, we utilized four
filter-based feature selections, namely Chi-Squared, Information Gain, Fisher and Relief to extract the top log:N
features (N - the total number of software metrics in the full fault datasets). The balanced training datasets with optimal
features were trained on Random Forest (RF), Extra Tree (ET), AdaBoost (AB) and HistGradientBoosting (HG). The
test sets are then fed to SFP models for comparing to the performance of these models using combinations of feature
selection and data sampling techniques in terms of precision, recall, F1-score and AUC. The following sections
indicate in detail software fault dataset, filter-based feature selection, GAN oversampling techniques and performance
evaluation measures.

A. Datasets

In this study, we have used 4 different datasets extracted from the PROMISE repository which are widely used
in many studies [19, 20]. In terms of software fault prediction, each dataset contains the independent variables which
are source code metrics such as Line of Code (LOC), Depth of Inheritance Tree (DIT), etc... and the dependent variable
is faulty or non-faulty module. The detailed datasets are shown in Table 1. Description of the used software fault
datasets.

Table 1. Description of the used software fault datasets

Dataset ~ Release Instances Metrics  Faulty  Imbalanced
Instances  Ratio (%)

PROMISE CM1 498 21 48 9.7
KC1 2107 21 325 154
KC2 522 21 107 20.5

PC1 1107 21 76 6.9
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Figure 1. Overview of the proposed methodology

B. Filter-based feature selection

The filter methods use ranking techniques to score the features and a threshold is utilized to eliminate features
below the threshold. The ranking techniques are applied before the classification stage to filter out the
redundant/irrelevant features [17]. The feature selection ranking methods used in this study are Chi-Squared,
Information Gain, Fisher and Relief which select optimal software metrics. While Chi-Squared is used to rank features
according to significance, Information Gain is an entropy-based which is calculated by comparing the entropy of the
dataset before and after splitting on features. The aim of Relief is to distinguish between instances of different classes
by estimating the importance or relevance of each feature. The Fisher score is derived from Fisher’s criterion, which
seeks to maximize the distance between the class means while minimizing the variance within each class [27].

C. Data oversampling

VanilaGAN is the simplest version of GAN. The generator network leans the probability of the training set by
mapping the noise z which is drawn independent and identically distributed from N (0, 0.01) and added to both real and
synthetic data to the probability distribution of training samples. Then, synthetic samples that are closer to real samples
were generated by the generator network. It uses backpropagation to train both models. In VanillaGAN, we use neural
networks to approximate complex, high-dimensional distributions for both generator and discriminator. The
discriminator training is done by minimizing its prediction error, whereas the generator is trained by maximizing the
prediction error by the discriminator. This can be formalized as follows:

MiN(ggen)MAX(©pis) (Ex~pD[logDis(x)] + E,p, [log (1 - Dis(Gen(z)))D (D

where pp is the real data distribution, p, is the prior distribution of the generative network and © Gen and @ Dis are
the parameters of the generator (Gen) and discriminator (Dis). Given a strong discriminator, the generator’s goal is
achieved if pp, the generator’s distribution over x, equals p,, the real distribution, which means that the Jensen-
Shannon Divergence (JSD) is minimized.

WGANGP is short for Wasserstein GAN with Gradient Penalty, a variant of GAN. WGAN (Wasserstein GAN)
helps to tackle issue of VanillaGAN that guarantees the model will converge at equilibrium. However, WGAN faces a
vanishing gradient problem. Therefore, WGANGP was proposed to solve gradient vanishing, or exploding problems
that were there in WGAN by using a gradient penalty instead of the weight-clipping. The GAN objective is defined as
follows:

MiN(©enyMaX(opis) (Ex~pp [10gDis ()] = E,p, [Dis(Gen(2))]) = » Ezp, [(IIVe(R)] | = 1)] 2

where X is the penalty coefficient. WGANGP uses a two-sided penalty based on empirical evidence that penalizes
gradients with a norm less than 1. The gradient penalty serves as a regularizer, ensuring that a discriminator that has
been trained to perfection has a smooth linear gradient that guides the generator to the data distribution while
restricting the discriminator’s power.

CTGAN is a GAN-based data synthesizer for single table data, which is able to learn from real data and
generates synthetic data with high fidelity. Unlike the above two variations of GAN, CTGAN uses mode-specific
normalization instead of min-max normalization for continuous columns. The mode-specific normalization technique is
leveraged to deal with columns that contain non-Gaussian and multimodal distributions. For each continuous column,
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CTGAN uses a variational Gaussian mixture model (VGM) to predict the number of modes and fit a Gaussian mixture
(GM).
D. Performance evaluation measures

In order to evaluate the performance feature selection ranking and data oversampling techniques, we considered
evaluation metrics such as precision, recall, F1-score and AUC. Table 2. Confusion matrix presents a confusion matrix

for two-class classifiers.
Table 2. Confusion matrix

Actual Predicted
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Precision: the ratio of positive instances from the total predicted positive instances.

Recall: known as sensitive, it presents the ratio of positive instances and the total actual positive instances.
F1-score: the harmonic mean of recall and precision.

AUC: is a summary of the ROC (the Receiver Operating Curve) that evaluates the ability of a classifier to
distinguish between classes.

IV. EXPERIMENTAL RESULTS

This section illustrates the experimental results on four fault datasets to evaluate the performance of combined
techniques (filter-based feature selection and oversampling). As mentioned previously, 3 different oversampling
methods are employed to balance 4 datasets with software metrics and 4 filter-based feature selection techniques have
been applied to overcome the redundancy problem. The performance of SFP models with oversampling and feature
selection techniques based on the selected and full software metrics is shown in Tables 4-7. The average performance
of four classifiers (RF, ET, AB and HGB) was also computed in each table to examine the effectiveness of feature
selection and data sampling in SFP in terms of precision, recall, F1-score and AUC. As shown in Tables 4-7, it is
observed that the performance of the predictive models based on a combination of 4 filter-based feature selection and 2
oversampling methods (VanillaGAN and CTGAN) was better than when no feature selection and data sampling are
utilized (as shown in Table 3). For instance, the average AUC values of the SFP model on the original datasets are
0.690, 0.711, 0.719 and 0.733 with the RF, ET, AB, and HGB model, respectively.

Table 3. Results of the SFP models without data sampling and feature selection
Dataset  Performance

Measures RF ET AB HGB
CM1 Precision 0.511 0580 0.589 0.577
Recall 0.502 0556 0.561 0.542
F1-score 0.502 0563 0.567 0.546
AUC 0.634 0.623 0.703 0.718
KC1 Precision 0.719 0.707 0.689 0.714
Recall 0.579 0.623 0.609 0.640
F1-score 0.596 0.645 0.630 0.663
AUC 0.702 0.710 0.723 0.728
KC2 Precision 0.726 0.694 0.702 0.725
Recall 0.665 0.646 0.671 0.678
F1-score 0.684 0.660 0.683 0.695
AUC 0.701 0.724 0.707 0.721
PC1 Precision 0.763 0.730 0.653 0.714
Recall 0.594 0593 0.616 0.620
F1-score 0.629 0.624 0.629 0.649
AUC 0.726 0.788 0.746 0.766
Average
Precision 0.679 0.677 0.658 0.682
Recall 0.585 0.605 0.614 0.620
F1-score 0.603 0.623 0.627 0.638
AUC 0.690 0.711 0.719 0.733

When comparing the average values of the combinational pairs of filter-based feature selection and sampling
techniques in Table 4, a combination of Chi-Squared and CTGAN exhibited the greatest value for all performance
measures, followed by pair of Chi-Squared and VanillaGAN. In particular, the average results of these pairs gained the
highest results for precision, recall, F1-score and AUC with 0.848, 0.867, 0.851 and 0.771, respectively. As shown in
Table 5, it can be seen that the combination of Information Gain and CTGAN performed the best precision, recall and
F1-score on the PC1, with the highest values of 0.924, 0.932 and 0.925. Again, the pair of Information Gain and
CTGAN on Extra Tree also obtained the best average results for precision, recall and F1-score values of 0.849, 0.867
and 0.852. As the results of Table 6, it is evident that the combination of Fisher and CTGAN outperformed other
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models for all performance measures on most datasets. For instance, it achieved the highest values of precision, recall
and F1-score with 0.925, 0.935 and 0.925, respectively. As depicted in Table 7. Results of the Relief& GAN methods,
we observed that Relief and CTGAN achieved a better performance than other combinations of filter-based feature
selection and oversampling techniques with the highest average precision, recall, F1-score and AUC values of 0.857,

0.873, 0.856 and 0.767, respectively on Extra Tree.
Table 4. Results of the Chi-Squared & GAN methods

Dataset  Performance Chi-Squared
Evaluation VanillaGAN CTGAN WGANGP
RF ET AB HGB RF ET AB HGB RF ET AB HGB
CM1  Precision 0.826 0.856 0.843 0.849 0.843 0.856 0.854 0.837 0.834 0.819 0.828 0.821
Recall 0.712 0.824 0.780 0.810 0.860 0.878 0.848 0.846 0.804 0.832 0.726 0.816
F1-score 0.758 0.834 0.806 0.827 0.849 0.861 0.849 0.840 0.816 0.824 0.766 0.817
AUC 0.635 0.739 0.679 0.706 0.675 0.739 0.723 0.690 0.643 0.657 0.574 0.679
KC1 Precision 0.809 0.816 0.807 0.823 0.817 0.827 0.813 0.825 0.804 0.804 0.797 0.808
Recall 0.759 0.826 0.802 0.831 0.845 0.848 0.841 0.850 0.814 0.808 0.815 0.802
F1-score 0.778 0.820 0.804 0.826 0.820 0.830 0.817 0.830 0.803 0.802 0.801 0.799
AUC 0.752 0.794 0.753 0.780 0.793 0.793 0.745 0.781 0.755 0.734 0.647 0.734
KC2 Precision 0.815 0.785 0.795 0.788 0.798 0.785 0.786 0.787 0.809 0.813 0.807 0.825
Recall 0.809 0.798 0.798 0.796 0.815 0.806 0.8 0.806 0.638 0.672 0.657 0.668
F1-score 0.811 0.788 0.794 0.788 0.792 0.788 0.788 0.791 0.665 0.698 0.682 0.693
AUC 0.777 0.783 0.701 0.773 0.785 0.775 0.658 0.762 0.753 0.799 0.744 0.761
PC1 Precision 0.899 0919 0919 0916 0.877 0925 0913 0930 0.884 00911 0.887 0.891
Recall 0.824 0916 0.907 0.916 0.922 0935 0.921 0938 0.817 0.814 0.682 0.823
F1-score 0.854 0917 0911 00915 0.897 0925 0916 0.929 0.837 0.836 0.739 0.844
AUC 0.780 0.784 0.839 0.826 0.724 0.775 0.838 0.802 0.681 0.698 0.616 0.663
Average

Precision 0.837 0.844 0.841 0.844 0.833 0.848 0.841 0.845 0.833 0.837 0.830 0.836
Recall 0.776  0.841 0.822 0.838 0.860 0.867 0.852 0.860 0.768 0.781 0.720 0.777
F1-score 0.800 0.840 0.829 0.839 0.839 0.851 0.842 0.847 0.780 0.790 0.747 0.788
AUC 0.736  0.775 0.743 0.771 0.744 0.771 0.741 0.759 0.708 0.722 0.645 0.709

Table 5. Results of the Information Gain&GAN methods

Dataset  Performance Information Gain
Evaluation VanillaGAN CTGAN WGANGP
RF ET AB HGB RF ET AB HGB RF ET AB HGB
CM1 Precision 0.853 0.853 0.843 0.844 0.832 0.863 0.864 0.832 0.834 0.823 0.827 0.820
Recall 0.722 0840 0.790 0.812 0.870 0.888 0.866 0.850 0.858 0.852 0.782 0.790
F1-score 0.769 0.843 0.812 0.826 0.847 0.865 0.861 0.839 0.844 0.836 0.801 0.802
AUC 0.671 0695 0.644 0.658 0.671 0.695 0.662 0.627 0.633 0.63 0.621 0.638
KC1 Precision 0.797 0.808 0.811 0.808 0.815 0.807 0.810 0.809 0.814 0.795 0.804 0.802
Recall 0.836 0.830 0.841 0.832 0.845 0.832 0.840 0.836 0.827 0.796 0.807 0.789
F1-score 0.801 0.815 0.818 0.816 0.822 0.815 0.814 0.817 0.817 0.792 0.804 0.793
AUC 0.765 0.784 0.735 0.761 0.773 0.778 0.737 0.754 0.763 0.725 0.664 0.725
KC2 Precision 0.803 0.807 0.791 0.811 0.821 0.803 0.776 0.794 0.798 0.804 0.813 0.812
Recall 0.804 0.815 0.791 0.813 0.825 0.815 0.787 0.808 0.64 0.643 0.628 0.634
F1-score 0.800 0.807 0.789 0.807 0.807 0.801 0.778 0.796 0.661 0.668 0.655 0.657
AUC 0.777 0791 0.726 0.792 0.812 0.788 0.651 0.783 0.765 0.788 0.737 0.767
PC1 Precision 0.893 0.918 0.899 0.907 0.881 0.924 0909 0.911 0.879 0.890 0.878 0.889
Recall 0.892 0915 0.907 0.917 0919 0.932 0.922 0.922 0.799 0.877 0.818 0.858
F1-score 0.891 0915 0.902 0.911 0.897 0.925 0.913 0.914 0.829 0.876 0.838 0.866
AUC 0.772 0.755 0.757 0.797 0.689 0.747 0.781 0.780 0.649 0.663 0.559 0.698
Average

Precision 0.836 0.846 0.836 0.843 0.837 0.849 0.840 0.836 0.831 0.828 0.830 0.830
Recall 0.813 0.850 0.832 0.844 0.864 0.867 0.854 0.854 0.781 0.792 0.759 0.768
F1-score 0.816 0.845 0.830 0.840 0.843 0.852 0.842 0.842 0.788 0.793 0.775 0.780
AUC 0.746 0.753 0.716 0.752 0.736 0.753 0.708 0.736 0.702 0.702 0.645 0.707

However, the combinations of each feature selection technique (Chi-Squared, Information Gain, Fisher, Relief)
and WGAN produced the same performance when no feature selection and data sampling techniques were applied.
When comparing the performance of the WGANP method with the AdaBoost technique, we found that the average
AUC values of Chi-Squared, Information Gain, Fisher and Relief had the lowest AUC values with 0.645, 0.645, 0.666
and 0.691 respectively as shown in Tables 4-7.
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Table 6. Results of the Fisher&GAN methods
Dataset  Performance Fisher
Evaluation VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.833 0.842 0836 0.828 0.845 0.837 0.836 0.840 0.818 0.814 0.828 HgB
Recall 0.674 0.838 0.766 0.794 0.850 0.866 0.816 0.852 0.788 0.852 0.746 0.832
F1-score 0.734 0.839 0.794 0.810 0.844 0.848 0.824 0.845 0.799 0.832 0.778 0.820

AUC 0.632 0.678 0.615 0.689 0.670 0.707 0.619 0.659 0.613 0.653 0.637 0.824

KC1 Precision 0.809 0.827 0.813 0.828 0.818 0.833 0.813 0.829 0.803 0.800 0.806 0.708
Recall 0.785 0.839 0834 0.844 0.843 0.855 0.839 0.851 0.800 0.792 0.783 0.805
F1-score 0.794 0832 0819 0.833 0.823 0.836 0.819 0.835 0.798 0.795 0.793 0.773

AUC 0.763 0.798 0.749 0.770 0.783 0.798 0.748 0.778 0.755 0.747 0.686 0.785

KC2 Precision 0.795 0.810 0.794 0.825 0.784 0.792 0.795 0.794 0.818 0.827 0.806 0.755
Recall 0.783 0.811 0.794 0.830 0.8 0.811 0.809 0.815 0.675 0.664 0.628 0.829
F1-score 0.787 0.808 0.793 0.826 0.778 0.793 0.799 0.799 0.700 0.690 0.649 0.674

AUC 0.774 0.793 0.708 0.763 0.781 0.787 0.666 0.761 0.724 0.803 0.728 0.699

PC1 Precision 0.902 0919 0.927 0920 0.893 0.930 0925 0.935 0.890 0.903 0.880 0.732
Recall 0.900 0.93 0.932 0926 0914 0939 0.932 0.942 0.846 0.877 0.732 0.896
F1-score 0.900 0.922 0.926 0.922 0.899 0.932 0.927 0.935 0.865 0.883 0.785 0.851

AUC 0.867 0808 0.817 0.889 0.749 0.816 0.867 0.879 0.700 0.732 0.611 0.868

Average

Precision 0.835 0.848 0.842 0.850 0.835 0.848 0.842 0.849 0.832 0.836 0.830 0.840

Recall 0.786 0.855 0.832 0.849 0.852 0.867 0.849 0.865 0.777 0.796 0.722 0.780
F1-score 0.804 0.850 0.833 0.848 0.836 0.852 0.842 0.853 0.790 0.800 0.751 0.794

AUC 0.759 0.769 0.722 0778 0.746 0.776 0.725 0.769 0.698 0.734 0.666 0.733

Table 7. Results of the Relief& GAN methods
Dataset ~ Performance Relief
Evaluation VanillaGAN CTGAN WGANGP

RF ET AB HGB RF ET AB HGB RF ET AB HGB

CM1 Precision 0.845 0.848 0.843 0.835 0.824 0.872 0.855 0.844 0.829 0.834 0.839 0.831
Recall 0.696 0.808 0.784 0.788 0.866 0.890 0.860 0.866 0.828 0.864 0.752 0.814
F1-score 0.75 0.824 0.807 0.807 0.844 0.868 0.856 0.851 0.827 0.848 0.787 0.821

AUC 0.647 0716 0.672 0.673 0.676 0.711 0.716 0.670 0.648 0.637 0.661 0.690

KC1 Precision 0.815 0.824 0811 0.827 0.815 0.833 0.825 0.843 0.815 0.821 0.816 0.824
Recall 0.781 0.838 0.833 0.845 0.844 0.854 0.85 0.861 0.811 0.806 0.782 0.800
F1-score 0.793 0.829 0.819 0.833 0.821 0.836 0.828 0.847 0.810 0.807 0.792 0.805

AUC 0.773 0.798 0.737 0.776 0.788 0.797 0.757 0.788 0.759 0.746 0.720 0.740

KC2 Precision 0.811 0.789 0.789 0.798 0.781 0.802 0.785 0.789 0.816 0.809 0.797 0.812
Recall 0.794 0804 0.791 0.804 0.804 0.817 0.798 0.806 0.658 0.651 0.609 0.642
F1-score 0.800 0.793 0.788 0.799 0.78 0.800 0.789 0.792 0.682 0.675 0.634 0.665

AUC 0.796 0.789 0.705 0.772 0.781 0.783 0.652 0.772 0.780 0.791 0.738 0.760

PC1 Precision 0.900 0.913 0916 00915 0.871 0.922 0914 0.929 0.893 0.902 0.893 0.898
Recall 0.859 0.917 0.905 0913 0.914 0.932 0921 0.937 0.794 0.770 0.695 0.759
F1-score 0.873 0914 0909 00912 089 0.921 0915 0.928 0.823 0.798 0.747 0.800

AUC 0.782 0.783 0.839 0.814 0.691 0.775 0.841 0.802 0.680 0.707 0.646 0.685

Average

Precision 0.843 0.843 0.840 0.844 0.822 0.857 0.845 0.851 0.838 0.841 0.836 0.841

Recall 0.783 0.842 0.828 0.837 0.857 0.873 0.857 0.867 0.773 0.773 0.710 0.753
F1-score 0.804 0.840 0.831 0.838 0.834 0.856 0.847 0.855 0.785 0.782 0.740 0.773

AUC 0.757 0.767 0.738 0.759 0.734 0.767 0.742 0.758 0.717 0.720 0.691 0.719

V.CONCLUSION

Several software fault prediction models have proposed building high quality software with minimal testing
resources by predicting faults at the early stage of software development. This study presents the combination of three
different oversampling techniques (VanillaGAN, CTGAN and WGANGP) and four feature selection ranking methods
(Chi-Squared, Information Gain, Fisher and Relief) to handle feature redundancy and data imbalance problems
effectively. The experiment was carried out on four datasets extracted from the PROMISE repository. The
experimental results showed that the performance of SFP models based on combinations of Chi-Squared&CTGAN,
Information Gain & CTGAN, Fisher& CTGAN and Relief& CTGAN outperformed with the highest average precision,
recall, F1-score and AUC values. Furthermore, all pairs of four feature selection ranking methods and VanillaGAN,
CTGAN performance excels in comparison to the SFP models with the full features of datasets. In the future, we plan
to generalize the findings of the presented work to more wrapper feature selection methods and data sampling
techniques using more software fault datasets. And we will also examine the comparative performance of the presented
methods for the cross-project defect prediction.
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KET HQ'P CAC KY THUAT TRICH CHON DAC TRUNG VA LAY MAU
D LIEU TRONG DW DOAN LOI PHAN MEM

Ha Thi Minh Phwong, Nguyén Thanh Long, Nguyé&n Thanh Binh

TOM TAT: Dy dodn 16 phan mem la quy #rinh xdy dung cac mo hinh aé duw dodn 16i trong giai doan ddu phat trzen phan
mém. Dy dodn cdc modun dé bi 16i phan mém c6 thé gitip cdc nha phdt trién phan bé nguon luc kiém thir hiéu qud hon va 16i uu héa
chi phi bao tri phan mém. Tuy nhién, hiéu sudt cia cdc mé hinh di dodn 16i bi anh hwéng béi chat lwong cua bg dir liéu 16i phan
mém. Céc dic trung khong lién quan va du thira cia bo dit liéu cé thé dan dén tdc dong tiéu cuc dén toc dg va do chinh xdc ciia cac
mé hinh mdy hoc dwoc dp dung dé hudn luyén. Ngoai ra, sw hi¢n dién ciia sy mdt cdn bang di¥ liéu khién s6 hrong médun bi 16i it hon
ddng ké so voi s6 heong modun khong bi 16i la mét thach thire trong dw dodn 16i. Nghién cieu nay dé dp dung 3 mé hinh Generative
Adversarial Network (GAN) gom VanillaGAN, CTGAN via WGANGP ciing véi 4 phwong phdp lwa chon déic trng nhie Chi-Squared,
Information Gain, Fisher va Relief trén 4 bg dir li¢u 16i phdn mém. Phdn tich so sanh dwoc thiee hién bang cdch sir dung 4 bg phan logi
khdc nhau dé dir dodn 16i phan mém. Ching t6i lwa chon cdc do do precision, recall, F1-score and Area Under the ROC (receiver
operating characteristic curve) Curve (AUC) dé danh gid hiéu sudt. Két qua thir nghiém cho thdy rang s két hop ciia CTGAN,
VanillaGAN va cdc phwong phdp lya chon ddc trung vueot tréi so voi cdc mé hinh dy dodn 16i ma khong can dp dung cdc phwong phdp
ldy méu dit liéu va hea chon ddc trung. Cdp két hop CTGAN va Relief thé hién hiéu sudt tot nhdt so véi cdc két hop khdc voi gid tri
trung binh cua precision, recall, F1-score AUC cao nhat lan luot 1a 0,857, 0,873, 0,856 va 0,767 trén Extra Tree.



