A Novel Configuration of Tuned Mass Damper With Energy Harvester of Piezoelectric Stack and Force Amplification Frame

I. INTRODUCTION

Recently, vibration-based piezoelectric energy harvesters have been widely developed as a promising alternative to traditional batteries or power grids [1]-[3]. Piezoelectric multilayer stack (PS) operating in the d_{31} mode is an appropriate harvester for applications involving large loads. However, one of the major problems when using a stand-alone PS for such applications is that only a small amount of energy will be generated under direct loading due to their extremely high stiffness [4], [5]. To overcome this problem, rhomboid-shaped concave mechanisms were proposed to amplify the input force applied to the shorter axis [6], [7], [8]. However, since each linkage in these mechanisms is subject to a large compressive force due to its positive tilting angle, such type of mechanism is at high risk of local buckling [9]. To resolve the bulking problem, convex force amplification frames were proposed so that the stress applied to the frame is tensile instead of compressive [9]-[12]. The combination of PS with force amplification frame (FAF) can be considered a module which is the so-called PSFAF.

Furthermore, the integration of vibration absorbers (VA) and/or tuned mass dampers (TMD) with energy harvesters like PS has become a rising need [13]-[18]. For instance, in [16], a TMD-PS without damper attached to a damped primary structure is studied. The proposed energy harvester is a multiple-row-column PS that can be characterized by an equivalent PS. In [18], a TMD-PS attached to an undamped primary system subjected to base excitation is investigated where the PS is connected to the TMD’s spring in series.

This paper is concerned with a novel configuration of TMD with PSFAF which is introduced in [19]. Modeling of the electromechanical system is implemented in Section 2. Numerical examination is carried out in Section 3. Section 4 contains a summary and conclusions.

II. TUNED MASS DAMPER WITH ENERGY HARVESTER OF PIEZOELECTRIC STACK AND FORCE AMPLIFICATION FRAME

A. Configuration of TMD with PSFAF

Fig. 1. TMD with PSFAF: a) mechanical configuration, b) Block of TMD’s spring and PSFAF

As depicted in Fig. 1a, the proposed system in the Patent [19] deals with a TMD incorporating PSFAF. The TMD consists of a mass m_d, dampers with the damping coefficient c_d, and springs with stiffness k_d. The TMD’s springs connect
to PSFAF in series (Fig. 1b). The TMD-PSFAF can be attached to a primary structure through an assembly frame using bolt joints. The working principle of the system is that the vibration of the primary structure is transferred partially vibration energy to the TMD; a part of the transferred energy is absorbed by the damper, and the other is converted to electrical energy through the piezoelectric effect. The FAF is used to amplify the output force delivered from the TMD’s spring force which acts on the PS. Hence, the vibration of the primary structure is suppressed, at the same time the electrical energy amount can be enlarged.

B. Modeling of TMD’s spring with PSFAF

Consider the block of TMD’s spring and PSFAF which are connected in series as depicted in Fig. 1b. The physical model of the block is shown in Fig. 2a where it is subjected to an axial force \(f_\alpha \) that delivers the force \(f_{d1} \) on TMD’s spring and the force \(f_{d2} \) on the PSFAF. Assuming that each linkage of the FAF is an elastic element, has negligible mass and hinge connections at both ends (no reaction moments) while other parts can be regarded as a rigid body. Therefore, the deformations occurring in the linkages are so small that they are only axial. Denote \(x_d \) is the total deformation of the block, \(x_{d1}, x_{d2}, x_f, x_p \) are the deformations of the TMD’s spring with stiffness \(k_{d1} \), of the FAF, of the linkages with stiffness \(k_f \), and of the piezoelectric stack with stiffness \(k_p \), respectively. Modeling of the block with the force-voltage relationship can be developed as follows.

\[
\begin{align*}
A_k & - A_k R = \frac{1}{C_q} \dot{q} \\
A_k & = \frac{V}{R} + \frac{1}{C_q} \dot{q}
\end{align*}
\]

\[
\begin{align*}
A_k & - A_k R = \frac{1}{C_q} \dot{q} \\
A_k & = \frac{V}{R} + \frac{1}{C_q} \dot{q}
\end{align*}
\]

Fig. 2. Modeling of a PSFAF connected to a spring in series: a) Physical model, b) quarter free body, c) equivalent model

First, it is clear that

\[
\begin{align*}
f_d & = f_{d1} = f_{d2} \\
x_d & = x_{d1} + x_{d2}
\end{align*}
\]

where:

\[
f_{d1} = k_{d1} x_{d1}
\]

Based on the geometric relationship (see Fig. 2b), the elastic force \(f_f \) of each linkage delivered from \(f_{d2} \) becomes

\[
f_f = f_{d2} f (2 \sin \beta)
\]

where: \(\beta \) is the angle of each of the four linkages with respect to the horizontal direction, i.e., structural angle. On the other hand, the force \(f_p \) applied to the piezoelectric stack is

\[
f_p = 2 f_f \cos \beta
\]

From (4), (5), one gets the relationship between \(f_{d2} \) and \(f_p \)

\[
f_p = k_f f_{d2}, \quad k_f = \cot \beta
\]

\[
x_{d2} = f_p = k_f = \cot \beta
\]

(7)

Noting (2), (3), one can extract from (7)

\[
x_p = \frac{x_{d2}}{k_p} = \frac{1}{k_p} (x_d - x_{d1}) = \frac{1}{k_p} \left(x_d - \frac{f_{d2}}{k_{d1}} \right)
\]

(8)

The force-voltage relationship of the PS is governed by the following constitutive equations [20]

\[
f_p = k_p x_p + \theta_p V
\]

(9)

\[
q = \theta_p x_p - C_p V
\]

(10)

where: \(\theta_p \) is the effective electromechanical coupling coefficient, \(q \) is the produced electric charge, \(C_p \) is the internal capacitance, and \(V \) is the voltage of the PS caused by the force \(f_p \). From (1), (6) and (9) one has

\[
x_p = \frac{f_p}{k_p} - \frac{\theta_p}{k_p} V = \frac{k_{d1} k_f}{k_{d1} k_f + k_p} x_d + \frac{k_{d1} \theta_p}{k_{d1} k_f + k_p} - \frac{k_p}{k_p} V
\]

(11)

Equaling (8) and (11) yields

\[
f_p = \frac{k_{d1} \theta_p}{k_{d1} k_f + k_p} x_d + \frac{k_{d1} \theta_p}{k_{d1} k_f + k_p} - \frac{k_p}{k_p} V
\]

(12)

Next, substituting (11) and (12) into (10) one gets

\[
q = \frac{k_{d1} \theta_p}{k_{d1} k_f + k_p} x_d - \frac{C_p}{k_{d1} k_f + k_p} \left(1 - \frac{k_p}{k_{d1} k_f + k_p} \right) x_d - \frac{k_p}{k_p} V
\]

(13)

Equations (12) and (13) can be rewritten as

\[
f_d = k_{d1} x_d + \theta_q \dot{V}
\]

(14)

\[
q = \theta_q x_d - C_q \dot{V}
\]

(15)

where:
A Novel Design of Tuned Mass Damper With Energy Harvester of Piezoelectric Stack and Force Magnification Frame

\[
\frac{k_{eq}}{k_d} = \frac{k_d x_d ^2 + k_p}{k_d x_d ^2 + k_p}, \quad \omega_d = \frac{k_d}{m_d}, \quad C_{eq} = C \left(1 - \frac{k_d}{k_d/k_p} x_d \right) \frac{\dot{V}}{x_d}.
\]

One can conclude that the block of TMD’s spring and PSFAF can be modeled as an equivalent PS where its constitutive equations (14), (15) are expressed in the total deformation \(x_d\) of the block, as shown in Fig. 2c. It is interesting to know that the block of TMD’s spring and PSFAF (without FAF) can also be considered as an equivalent PS, as proven in [21].

C. Modeling of undamped primary structure with TMD-PSFAF

The physical model of an undamped primary structure with TMD-PSFAF is illustrated in Fig. 3a. Denote \(T\) being the time, the harmonic external excitation \(F(t)\) with amplitude \(F_o\) and frequency \(\Omega\) acting on \(m_s\) in the form of

\[
F(T) = F_o \cos \omega T
\]

![Fig. 3. Schematic of TMD-PSFAF system: a) lumped-mass model, b) equilibrium of forces](image)

Since the block of TMD’s spring and PSFAF can be modeled as an equivalent PS, the governing equations of the considered system are given by

\[
\begin{align*}
\dot{m}_s \ddot{x}_s - c_d \dot{x}_s + k_s x_s - k_{eq} x_d + \theta_d \dot{V} &= F_o \cos(\omega T) \\
m_d \ddot{x}_d + c_d \dot{x}_d + k_d x_d + \theta_d \dot{V} &= -m_s \ddot{x}_s \\
C_{eq} \ddot{V} + \frac{\dot{V}}{R} &= \theta_d \dot{x}_d
\end{align*}
\]

Since the block of TMD’s spring and PSFAF can be modeled as an equivalent PS, the governing equations of the considered system are given by

\[
\begin{align*}
m_s \ddot{x}_s - c_d \dot{x}_s + k_s x_s - k_{eq} x_d + \theta_d \dot{V} &= F_o \cos(\omega T) \\
m_d \ddot{x}_d + c_d \dot{x}_d + k_d x_d + \theta_d \dot{V} &= -m_s \ddot{x}_s \\
C_{eq} \ddot{V} + \frac{\dot{V}}{R} &= \theta_d \dot{x}_d
\end{align*}
\]

Since the block of TMD’s spring and PSFAF can be modeled as an equivalent PS, the governing equations of the considered system are given by

\[
\begin{align*}
m_s \ddot{x}_s - c_d \dot{x}_s + k_s x_s - k_{eq} x_d + \theta_d \dot{V} &= F_o \cos(\omega T) \\
m_d \ddot{x}_d + c_d \dot{x}_d + k_d x_d + \theta_d \dot{V} &= -m_s \ddot{x}_s \\
C_{eq} \ddot{V} + \frac{\dot{V}}{R} &= \theta_d \dot{x}_d
\end{align*}
\]

Let us denote

\[
\begin{align*}
t &= \omega T, \quad x_s = x_1, x_d = x_2, \\
\omega_d &= \sqrt{k_d/m_s}, \quad \omega &= \sqrt{k_d/m_d}, \quad \mu = m_d/m_s, \\
\xi_d &= \frac{c_d}{2m_d\omega_d}, \quad \beta = \frac{\omega_d}{\omega}, \quad \lambda = \frac{\omega_d}{k_d}, \quad \kappa = \frac{\theta_d}{k_{eq}}, \\
\alpha &= \frac{C_{eq}}{\theta_d}, \quad \alpha_X = \frac{F_0}{\theta_d}, \quad X_n = \frac{F_0}{k_s}, \quad v_o = \frac{1}{\omega R C_{eq}}.
\end{align*}
\]

Hence the equation system (18) can be transformed into the following dimensionless system

\[
\begin{align*}
\ddot{x}_1 - 2\mu\beta\ddot{x}_2 \dot{x}_1 + x_1 - \mu\beta^2 \ddot{x}_2 = X_n \cos \lambda t \\
\ddot{x}_2 + 2\beta\ddot{x}_1 \dot{x}_2 + \beta^2 \ddot{x}_2 + \kappa \ddot{x}_2 = -\ddot{x}_1 \\
\ddot{v} + \lambda \alpha v = \ddot{x}_2
\end{align*}
\]

where: the over dots now denote the derivatives regarding dimensionless time \(\tau\). Physically, \(\omega_d\) and \(\omega_p\) are the natural frequency of the primary structure and the TMD-PSFAF, \(\kappa\) is the electromechanical coupling coefficient, \(\alpha\) is the resistance ratio, \(v\) is the transformed voltage, and \(\mu, \xi, \beta, \lambda\) are the mass ratio, damping ratio, tuning ratio, and the ratio of excitation frequency to primary structure frequency, respectively. It is seen that the system (20) is a linear system of ordinary differential equations for three unknowns, \(x_1(t), x_2(t)\) and \(v(t)\). Solving (20), those responses could be obtained as follows

\[
\begin{align*}
x_1(t) &= A_1 \cos(\lambda t + \phi_1) \\
x_2(t) &= A_2 \cos(\lambda t + \phi_2) \\
v(t) &= A_3 \cos(\lambda t + \phi_3)
\end{align*}
\]

where: \(A_1, A_2, A_3\) and \(\phi_1, \phi_2, \phi_3\) are amplitudes and phases of \(x_1(t), x_2(t), v(t)\), respectively, which are given by

\[
\begin{align*}
A_1 &= X_n \frac{B_1^2 + B_2^2}{E_1 + E_2}, \quad \phi_1 = \tan^{-1} \left(\frac{B_1 E_2 - B_2 E_1}{B_1 E_1 + B_2 E_2} \right), \\
A_2 &= X_n \frac{C_1^2 + C_2^2}{E_1 + E_2}, \quad \phi_2 = \tan^{-1} \left(\frac{C_1 E_2 - C_2 E_1}{C_1 E_1 + C_2 E_2} \right), \\
A_3 &= X_n \frac{D_1^2 + D_2^2}{E_1 + E_2}, \quad \phi_3 = \tan^{-1} \left(\frac{D_1 E_2 - D_2 E_1}{D_1 E_1 + D_2 E_2} \right)
\end{align*}
\]

where:

\[
\begin{align*}
B_1 &= \alpha \left(\beta^2 - \lambda^2 \right) - 2\beta \xi \lambda, \\
B_2 &= \beta \left(\beta - \lambda^2 + 2\alpha \beta \xi \lambda + \kappa \beta^2 \right), \\
C_1 &= \alpha \lambda \xi, \quad C_2 = \lambda \xi, \quad D_1 = 0, \quad D_2 = \lambda^2, \\
E_1 &= (\lambda^2 - 1) \left(2\beta \xi \lambda - \alpha \beta^2 \right), \\
E_2 &= \mu \beta \lambda \left(2\xi \lambda - \alpha \beta \right), \\
E_3 &= \left(1 - \lambda^2 \right) \left(2\alpha \xi \lambda + \kappa \beta^2 - \beta^2 - \lambda^2 \right)
\end{align*}
\]

Accordingly, the mechanical magnification factors of \(x_1(t), x_2(t)\), say \(K_1, K_2\), and the voltage amplitude factor, say \(v_o\), are calculated by, respectively

\[
K_1 = \frac{A_1}{X_n} = \frac{B_1^2 + B_2^2}{E_1 + E_2}
\]
\[K_2 = \frac{A_1}{X_\nu} = \frac{C_1^2 + C_2^2}{E_1^2 + E_2^2} \]
\[v_0 = \frac{A_1}{X_\nu} = \frac{D_1^2 + D_2^2}{E_1^2 + E_2^2} \]

It is seen from (20) that when \(\kappa^2 = 0 \) one gets the mechanical TMD system. Practically, the value of \(\kappa^2 \) is small for engineering systems. Therefore, to investigate the behavior of the undamped primary structure with TMD-PSFAF in considering \(\kappa^2 \rightarrow 0 \), the results of the optimal mechanical TMD [22], [23] are adopted for \(\beta \) and \(\xi_d \) of TMD-PSFAF

\[\beta = \beta_{\text{int}} = \frac{1}{1 + \mu} \]
\[\xi_d = \xi_{\text{int}} = \frac{3\mu}{8(1 + \mu)} \]

III. NUMERICAL EXAMINATION

Fig. 4a and Fig. 4b depict curves \(K_1, K_2 \) given by Eqs. (24), (25), while Fig. 4c depicts curve \(v_0 \) given by Eq. (26) in the frequency domain with \(\mu = 0.05, \kappa^2 = 0.01, \alpha = 1 \). It is seen that all curves \(K_1, K_2, v_0 \) have fixed points independent of damping. Namely, the curve \(K_1 \) has two fixed points, say \(P(\lambda_{11},K_{11}) = P(0.8965,6.524) \) and \(Q(\lambda_{12},K_{12}) = Q(1.05,6.303) \) , the curve \(K_2 \) has a fixed point \(S_2(\lambda_{22},K_{22}) = S_2(0.976,21) \) , while the curve \(v_0 \) also has a fixed point \(S_1(\lambda_{11},K_{11}) = S_1(0.976,14.85) \).

In more detail, it is seen from Fig. 4a that \(K_1 \) has two peaks that are close to \(P \) and \(Q \) as \(\xi_{d1} = \xi_{d2} \). The height of the left peak is 6.513, while that of the right one is 6.304, corresponding to a height difference of 3.21%. As \(\xi_{d1} < \xi_{d2} \), the two peaks of \(K_1 \) are higher than \(K_{11}, K_{12} \). As \(\xi_{d2} \gg \xi_{d1} \), these two peaks merge into one and this single peak is still higher than \(K_{11}, K_{12} \). Thus, the tuning and damping ratios \(\beta_{\text{int}}, \xi_{\text{int}} \) keep the two peaks of the curve \(K_1 \) at approximately equal height, and they are lower than that corresponds to other considered values of \(\beta \) and \(\xi_{d} \).

As shown in Fig. 4b, the curve \(K_2 \) also has two peaks of approximately equal height appearing in the vicinity of \(\lambda_{21}, \lambda_{22} \). The two peaks are higher than \(K_{21} \) as \(\xi_{d2} < \xi_{d1} \), and merge into a single peak at the fixed point \(S_2 \) as \(\xi_{d2} > \xi_{d1} \). As \(\xi_{d2} \gg \xi_{d1} \), the corresponding two peaks of \(K_2 \) have nearly equal heights, say 21.71 on the left and 21.29 on the right. Since those peaks are much higher than that of \(K_2 \), it is shown that the vibration of \(m_1 \) is suppressed and converted partially to the vibration of \(m_2 \).

Similarly, the curve \(v_0 \) has the same properties as that of the curve \(K_2 \) (Fig. 4c). More specially, the abscissa \(\lambda_{31} \) of the fixed point \(S_2 \) is coincided with \(\lambda_{32} \) of the fixed point \(S_2 \). For both curves \(K_1 \) and \(v_0 \), the two peaks tend to infinite as \(\xi_{d1} \to 0 \), otherwise tend to zero as \(\xi_{d1} \to \infty \).

Nguyen Ngoc Linh et al.

Fig. 4. \(K_1, K_2, v_0 \) versus \(\lambda \) with \(\mu = 0.05, \kappa^2 = 0.01, \alpha = 1 \) and \(\xi_{d1} \) varies: a) \(K_1 \); b) \(K_2 \); c) \(v_0 \)
versus \(s \), i.e. 6.406 versus 6.408 for \(s \), say \(s \to \infty \). The other values of \(s \) vary from those cases. Generally, \(s \) has less effect on \(K_1, K_2 \) (Fig. 5a, b). Any change in the value of \(s \) leads to the right peak of \(K_1, K_2 \) being higher than the left one but the height difference is not large. It is interesting to see that the two peaks of \(K_1, K_2 \) have almost equal heights as \(s \to \infty \), i.e. 6.406 versus 6.408 for \(K_1 \), 21.68 versus 21.69 for \(K_2 \). That means \(s \to \infty \) may be an optimal value for vibration suppression of \(K_1 \) regarding \(\beta = \beta_{\text{inh}}, \tilde{\xi}_d = \tilde{\xi}_{\text{inh}} \). However, it is emphasized that \(s \to 0 \) corresponds to the zero voltage, \(s \to \infty \) corresponds to the zero voltage (Fig. 5c), and both open- and short-circuit conditions result in zero electrical power. Besides, the larger the value of \(s \), the smaller the voltage amplitude will be. Therefore, to ensure that the two peaks of \(K_1 \) are approximately equal in height and the voltage amplitude \(V_o \) is large enough, the value of \(s \) should be considered in the interval \([1, 2]\). Moreover, \(K_2 \) has a fixed point independent of \(s \), i.e., 21.68. \(S_4 \) is coincided with the fixed point \(S_4 \).

IV. Conclusion

In the paper, the following main works and conclusions could be drawn.

(a) A novel configuration of a tuned mass damper (TMD) with energy harvester (PSFAF) of piezoelectric stacks (PS) and force amplification frames (FAF) are introduced where the FAFs for PSs are connected to the TMD’s springs in series.

(b) First, the block of TMD’s spring and PSFAF can be modeled as an equivalent PS where its constitutive equations are established in the total deformation of the block. After that, the governing equations of TMD-PSFAF attached to an undamped primary structure under external excitation could be derived.

(c) Numerical investigation of the electromechanical system is carried out. It is found that all magnification factors and voltage amplitude curves \(K_1, K_2, V_o \) have fixed points independent of damping, namely, the curve \(K_1 \) has two fixed points \(P \) and \(Q \), the curve \(K_2 \) has a fixed point \(S_2 \), while the curve \(V_o \) also has a fixed point \(S_3 \). \(K_2 \) also has a fixed point independent of the resistance ratio \(s \), say \(S_4 \). It turns out that \(S_4 \) coincides with \(S_2 \). Besides, adopting the optimal tuning and damping ratios derived from the fixed point theory applied to the corresponding mechanical TMD, the effective value of \(s \) is proposed to be chosen in the interval \([1, 2]\) to achieve vibration suppression for the primary structure as well as harvested voltage amplitude large enough.

(d) Because of the existence of the above-mentioned fixed points, developing the fixed point theory for the proposed energy harvesting TMD configuration will be the further work of this research.
REFERENCES

