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ABSTRACT: In the medical study of lungs' infection, pneumonia may be caused by bacteria, or  viruses. When lungs are infected by 

pneumonia, the air sacs become inflamed and fill up with fluid or pus. Highly-trained radiography expert interpreters are 

responsible for interpreting possible pneumonia in industry radiography. Consequently, it intensively relies on the aptitude and 

experience of the interpreter, plus the inadequate X-ray image's quality. Thus, the detection of pneumonia using different medical 

imaging techniques becomes very challenging. Any wrong detection could lead to serious consequences in medical treatment. 

Accurate identification is preliminary to any kind of intervention. Therefore, leveraging technology in automatic detection of these 

radiography has become essential. Unfortunately, constructing and training a complex deep learning model from scratch is mostly 

infeasible due to the lack of hardware infrastructure. Therefore, this paper exploits the idea of transfer learning which is the 

improvement of learning in a new prediction task through the transfer of knowledge from a related prediction task that has already 

been learned. This will improve the current computer vision methods based on the use of deep learning to more effectively diagnose 

the presence of pneumonia in X-rays images. By utilizing convolutional neural networks re-trained with our obtained data, our 

experiment shows that the proposed idea performs perfectly and achieves the classification accuracy of 98.0% ± 0.17 with the 

acceptable deployment time on a normal laptop. 
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I. INTRODUCTION 

According to the World Health Organization (WHO), pneumonia approximately kills 2 million children under 5 

years old every year and is consistently estimated as the single leading cause of childhood mortality [1,2]. In fact, it 

kills more children than HIV/AIDS, malaria, and measles combined. A statistics conducted by [3, 4] showed that 1.57 

million children under 5 years old died from pneumonia in 2008, accounting for 18% of 8.8 million global childhood 

deaths. It is noticeable that nearly all cases, approximately 95%, of clinical pneumonia occur in developing countries, 

particularly in Southeast Asia and Africa. Therefore, accurate and timely detection is mandatory. One key element of 

detecting pneumonia is radiographic data since chest X-rays are routinely obtained as standard of care and can help 

differentiate between normal and/or pneumonia. To solve this problem, we investigated the effectiveness of a transfer 

learning framework in classifying chest X-rays images to detect pneumonia facilitating rapid referrals for children 

needing urgent intervention.   

From the machine learning point of view, the mentioned problem could be unquestionably addressable by the 

adoption of a new rapid solution that can bring X-Ray experts and computer scientists into one choir. A major 

assumption in applying many machine learning algorithms is that the training and future data must be in a similar 

feature space. Any differences may be eliminated before learning or they have no equivalent covariances during 

training a model. However, in many real-world applications, this assumption may be a solid drawback. The isolation 

insists on an entire learning procedure from dataset acquirement, model learning, model evaluation and hyperparameter 

tuning. Thus, a demand for computing infrastructure and financial support is obviously seen. Transfer learning, 

however, attempts to change it by developing methods to transfer knowledge learned in one or more source tasks and 

use it to improve learning in a related target task [5, 6]. Transfer learning improves learning in the target task by 

leveraging knowledge from the source task. 

Transfer learning methods tend to be greatly dependent on the machine learning algorithms being used to learn 

the prediction tasks, and can often merely be considered extensions of those algorithms. Tremendous progress has been 

made in image classification and recognition, primarily thanks to the availability of large-scale annotated datasets, i.e. 

ImageNet [7]. Since Krizhevsky et al. [8] won the ImageNet 2012 competition, there have been much interest and 

work toward the revival of deep convolutional neural networks [9], especially in the task of image classification [10, 

11, 12]. However, in this paper, we aim neither to maximize absolute performance nor to build a complete model from 

scratch, but rather to study transfer results of a well-known convolutional architecture. We use the reference 

implementation provided by Tensorflow [13, 14] so that our experiment results will be comparable, extensible and 

usable for a large number of upcoming research. 

The rest of this paper is as follows. First of all, Section II summarizes several key research on the task of X-Ray 

images classification. In Section III, we briefly discuss the overview of technical background including transfer 

learning, deep convolutional neural networks that summarizes a critical state-of-the-art review existing in the literature 

that is essential to solving the problems. In Section IV, we evaluate and perform the approach to our experiment 

dataset. Finally, Section V recapitulates the approaches and discuss achievements done in this research. 
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II. STATE OF THE ART 

Computerized clinical specification and decision recommendation systems have been developed to help 

radiologists and clinical experts diagnose and detect disease. Success integration of these automated systems has 

empowered the work done in medical images and graphics research. An early attempt to classify pneumonia was 

conducted nearly two decades ago [15]. In that paper, they detected pneumonia by developing several natural language 

processing techniques to extract information from chest X-ray reports. They compared the performance of expert-

crafted rules, a Bayesian network, and a decision tree to determine whether a chest X-ray report contained enough 

information to support a diagnosis of acute pneumonia. Later chest radiography has become pervasive in computer-

aided diagnosis [16] and is one of the primary diagnostic imaging procedures for evaluating diseases in medical 

practices because it is economical and easy to use. Since then, X-ray images have been taken enough to provide data 

for multi-discipline research. Fortunately, deep neural networks have lately earned much attention due to its significant 

achievement in a wide range of computer science applications. Rapid advances in deep neural networks have resulted 

in the deployment of convolutional neural networks (CNNs) in the task of chest radiography classification. In a work 

done in [17] that applied CNNs to obtain deep learning features of X-rays images and executed random forest model on 

top to classify lung nodule. Image-based deep learning classifiers have gained potential generalization in biomedical 

image interpretation and medical decision making. The authors in [18] compared the performance of traditional deep 

neural networks and transfer learning in a vast application. Furthermore, they investigated a transfer learning model, 

called inception-V3, in the comparison of chest X-rays presenting as pneumonia versus normal. They achieved an 

accuracy of 92.8%, with a sensitivity of 93.2% and a specificity of 90.1%. We re-implement their methods and achieve 

the equivalent results. In this study, we evaluate a more effective transfer learning model in a similar classification task 

and a dataset of chest X-ray images. 

III. MATERIAL AND METHODS 

A. Transfer Learning 

Given a training dataset X_train         and the equivalent label Y_train     where n, and m are the number 

of observations, and the number of features respectively. To construct a prediction model f, traditional machine 

learning methods are trained by pairs of (X_train, Y_train) = {(x_i, y_i), …, (x_n, y_n)}. Traditionally, a major 

assumption in many machine learning algorithms is that the training and future data must be in the similar feature 

space, more specifically X_train and X_test must be under the same distribution D. It means that the training and the 

test dataset must share the similar marginal probability distribution P(X) over D. However, in many real-world 

applications, this assumption may be difficult to follow.  

Transfer learning, however, attempts to change it by developing methods to transfer knowledge learned in one 

or more source tasks and use it to improve learning in a related target task [5, 19, 20]. It allows the model to be applied 

to datasets drawn from some distribution different from the one upon which it was trained. Modern object 

identification and classification models with millions of parameters can take weeks to fully train. Transfer learning is a 

technique that shortcuts a lot of this work by taking a fully-trained model for a set of predefined categories like 

ImageNet [7, 21], and retrains from the existing weights for new implemented classes. The goal of transfer learning is 

to improve learning in the target task by leveraging knowledge transferability from the source task. Thus, the transfer 

learning procedure can be defined as follows. Two identification datasets D_source and D_test are constructed by two 

different research groups. Our task is to assign labels Y_target_test to test data X_target_test drawn from distribution 

D_target given the training data (X_target_train, Y_target_train) drawn from distribution D_target. Among the 

different approaches to transfer learning [22, 19], we prefer instance-based transfer [23], which assumes that some 

instances in the source domain can be reused. By re-weighting weights of instances in the source domain, effects of 

dissimilar observations will be reduced, while similar observations will contribute more to the target domain and may 

thus lead to a more accurate model. The difference between traditional machine learning and transfer learning is 

presented in Figure (1). 

 

Figure 1. Difference between traditional machine learning and transfer learning 
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B. Convolutional Neural Networks 

Convolutional neural networks (CNNs) have recently gained outstanding image classification performance in 

the large-scale challenges [24, 7, 21, 25]. The success of CNNs is achieved by their ability to learn rich level image 

representations as its hidden layers can be integrated theoretically unlimited. However, learning CNNs requires a very 

large number of annotated image samples and an estimation of millions of model parameters. This property obviously 

prevents the application of CNNs to problems with limited training data. There is a phenomenon in deep neural 

networks such that when trained the model on images, it tends to learn first-layer features that resemble either Gabor 

filters or color blobs [26]. Such first-layer features appear not to be specific to a particular dataset, but generally in the 

way that they are applicable to different tasks. The transition of knowledge is eventually transferred from the first layer 

to the last layer of the network. Expectedly, several large-scale datasets can be used to train the learning models, and 

then the learned models are applied to a particular target task where the parameters of the last layer are re-weighted 

based on its own dataset.  The idea of transferring knowledge along deep neural networks have been explored by many 

previous researches [26, 27, 28, 29, 30]. Going to that research direction, we explore the performance of several state-

of-the-art convolutional neural networks upon our collected data. 

C. Depthwise Separable Convolution Based Model 

MobileNets are a class of convolutional neural network designed by researches at Google [14]. It is designed to 

effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded 

application. The models are effectively small, low-latency, low-power parameterized to meet the resource constraints 

of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to 

how other popular large-scale models. The main difference between the MobileNets architecture and a traditional 

CNNs is instead of a single       convolution layer followed by batch normalization [31] and ReLU [32], MobileNets 

split the convolution into a       depthwise convolution and a       pointwise convolution. The depthwise 

convolution applies a single filter to each input channel while the pointwise convolution combines the outputs of the 

depthwise ones. These two convolutions are shown in Figure (2). The depthwise separable convolution based model is 

described in Table (2). The comparison between a standard full convolution and 16 versions of MobileNets is 

presented in Table (3). Readers should refer to the original paper of the model [14] for greater details. 

 

 
Figure 2. A depthwise and a pointwise convolutions 

Thanks to the idea of depthwise separable convolution, the network architecture is lighter, and consequently, the 

computation expense is significantly reduced. In order to build such less computationally expensive architecture, the 

model surfaces two hyper-parameters, e.g. width multiplier and resolution multiplier, that we can tune to fit the 

resource and/or accuracy trade-off of our implemented model. The width multiplier allows us to thin the network, 

while the resolution multiplier changes the input dimensions of the image, reducing the internal representation at every 

layer. Given   and   be the width multiplier and resolution multiplier respectively.  Given the value of     {1, 0.75, 

0.5, 0.25} and the value of     {224, 192, 160, 128}, Table (3) shows the comparison between a full convolution and 

16 combinations of   and   in terms of the number of fused multiplication and addition operations, and the number of 

learned parameters. The reduction of computational cost and the number of parameters is quadratically by roughly     
and   .  

IV. EXPERIMENTS 

A. Dataset 

The authors summarize the experiment dataset as follows. Chest X-ray images were selected from retrospective 

cohorts of pediatric patients of one to five years old from Guangzhou Women and Children’s Medical Center, 

Guangzhou. All chest X-ray imaging was performed as part of patients’ routine clinical care. For the analysis of chest 

x-ray images, all chest radiographs were initially screened for quality control by removing all low quality or unreadable 
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scans. This is a huge dataset on the X-Ray images and several data packages have been released to the research 

community. In this paper's experiments, the authors obtained a total of 5216 chest X-ray images from children, 

including 3874 characterized as depicting pneumonia and 1341 normal. The dimensions of images are varied ranging 

from 384 x 127 to 2772 x 2098. More details of the data can be found in [33]. Several examples of Chest X-Rays can 

be found in Figure (3). The authors have not applied any preprocessing techniques and keep these images as they are in 

designing our workflow. 

 
Figure 3. Illustrative examples of chest X-Rays in patients with pneumonia. The normal chest X-rays are the upper three images 

while pneumonia are the lower three images. Note that these images are selected for the ease of illustration 

B. Data Splitting Schemes 

Machine learning models have the fundamental goal of making accurate predictions on unseen instances beyond 

those appeared in the training set. To estimate the quality of models' predictions with data it has not seen, we can split a 

portion of the data for which we already know the answer as a proxy for the unseen data. Then we evaluate how well 

the model predicts for that data. Typically, training dataset contains observations used to fit a learning model. 

Validation dataset comprises instances used to provide an unprejudiced evaluation of the learning model by tuning 

hyperparameters. Test dataset includes samples of data used to provide an unbiased evaluation of the final learning 

model fit on the training dataset. The authors randomly shuffle the data into training, test, and validation sets without 

replacement in every experiment. In our experiment, we set up three different dataset splitting schemes by tuning 

various split ratios. We divide the obtaining data into three different splitting schemes which the readers can see a 

summation in Table (1). 

1. Dataset splitting scheme 1: The proportion of training, validation and test sets are 80%, 10%, and 10% 

respectively. We denote is as 80|10|10 hereafter. 

2. Dataset splitting scheme 2: The proportion of training, validation and test sets are 70%, 15%, and 15% 

respectively. We denote is as 70|15|15 hereafter. 

3. Dataset splitting scheme 3: The proportion of training, validation and test sets are 60%, 20%, and 20% 

respectively. We denote is as 60|20|20 hereafter. 

Table 1. Summary of several splitting schemes. 

Pneumonia Data Splitting schemes 

80 | 10 | 10 70 | 15 | 15 60 | 20 | 20 

A total of 5216 images 4172 | 522 | 522 3652 | 782 | 782 3130 | 1043 | 1043 

C. Implementation and Results 

The implementation of the models is done using Python in the Anaconda Python Distribution environment in 

the Windows 10 platform. In our experiments, we set the required model hyper-parameters as follows. The learning 

rate is {0.1,0.01,0.001}. The number of epoch is {1500,2000,2500}. Our experiments were conducted on a normal 
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laptop Core i7-6500U with 2.5GHz clock speed, 8GB of RAM. The low-end GPU NVIDIA GeForce 940MX with 

4GB of RAM is activated by default. The input size of the depthwise separable convolution based model is          

for height, width and channel respectively. n   {224, 192, 160, 128}.     {1.0, 0.75, 0.50, 0.25} is the hyperparameter 

that controls total amount of parameters used by the model. The classification decision is made at the softmax layer 

where its input is the probability distribution of investigated labels. The depthwise separable convolution based model 

is described in Table (2). We have executed 6912 experiments that each experiment requires from 5 minutes to 12 

minutes to complete depending on the models' hyperparameters configuration. The identification accuracy is reported 

in Table (4). 

1. Scenario 1: Experiment results on dataset splitting scheme 1 

In this scenario, we evaluated our adapted deep architecture on dataset splitting scheme 1. We randomly shuffle 

dataset without replacement 3 times and execute 16 versions of the MobileNets model. Then we take an average in the 

end.  The best percentage of accuracy score is 98.0%   0.17 in case of epoch 2000,   = 1.0, learning rate 0.01. The 

results of this scenario is presented in Table (4), column 80 | 10 | 10 specifically. 

2. Scenario 2: Experiment results on dataset splitting scheme 2 

Similar to scenario 1, we randomly shuffle dataset without replacement 3 times, execute 16 versions of the 

MobileNets model and take an average of classification accuracy in the end. The best accurate score is 97.2% in case 

of epoch 2000,   = 1.0, learning rate 0.01. The results of this scenario is presented in Table (4), column 70 | 15 | 15 

specifically. 

3. Scenario 3: Experiment results on dataset splitting scheme 3 

The third scenario is investigated to examine the model's performance in the case of the lower proportion of 

training set, e.g. 60%. We apply a similar experiment configuration as the previous two scenarios. The best detection 

score is 97.5% which evidently confirms the effectiveness of transfer learning in this image classification task. The 

results of this scenario is presented in Table (4), column 60 | 20 | 20 specifically. 
 

Table 2. The outline of depthwise separable convolution based architecture. At the softmax layer, c is the number of predicted labels 

Type / Stride Filter shape Input size 

Conv / s2 3×3×3×32 n × n ×3 

Conv dw / s1 3×3×32 dw 112×112×32 

Conv s1 1×1×32×64 112×112×32 

Conv dw / s2 3×3×64 dw 112×112×64 

Conv / s1 1×1×64×128 56×56×64 

Conv dw / s1 3×3×128 dw 56×56×128 

Conv / s1 1×1×128×128 56×56×128 

Conv dw / s2 3×3×128 dw 56×56×128 

Conv / s1 1×1×128×256 28×28×128 

Conv dw / s1 3×3×256 dw 28×28×256 

Conv / s1 1×1×256×256 28×28×256 

Conv dw / s2 3×3×256 dw 28×28×256 

Conv / s1 1×1×256×512 14×14×256 

5× Conv dw / s1  

     Conv / s1 

3×3×512 dw 

1×1×512×512 

14×14×512 

14×14×512 

Conv dw / s2 3×3×512 dw 14×14×512 

Conv / s1 1×1×512×1024 7×7×512 

Conv dw / s2 3×3×1024 dw 7×7×1024 

Conv / s1 1×1×1024×1024 7×7×1024 

Avg Pool / s1 Pool 7×7 7×7×1024 

FC / s1 1024×1000 1×1×1024 

Softmax / s1 Classifier 1×1× c 
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Table 3. The comparison between a full convolution and 16 versions of MobileNets 

Models Million Mult-Adds Million Parameters 

Full convolution 4866 29.3 

MobileNets 1.0-244 569 4.24 

MobileNets 1.0-192 418 4.24 

MobileNets 1.0-160 291 4.24 

MobileNets 1.0-128 186 4.24 

MobileNets 0.75-244 317 2.59 

MobileNets 0.75-192 233 2.59 

MobileNets 0.75-160 162 2.59 

MobileNets 0.75-128 104 2.59 

MobileNets 0.50-244 150 1.34 

MobileNets 0.50-192 110 1.34 

MobileNets 0.50-160 77 1.34 

MobileNets 0.50-128 49 1.34 

MobileNets 0.25-244 41 0.47 

MobileNets 0.25-192 34 0.47 

MobileNets 0.25-160 21 0.47 

MobileNets 0.25-128 14 0.47 

 
Table 4. The classification accuracy of evaluated models on the chest X-ray dataset. The best score is in bold 

Models Splitting schemes 

80 | 10 | 10 70 | 15 | 15 60 | 20 | 20 

MobileNets 1.0-244 98.0%     0.17 96.2%     0.06 97.1%     0.60 

MobileNets 1.0-192 97.3%     0.31 97.1%     0.15 97.0%     0.15 

MobileNets 1.0-160 97.2%     0.21 95.8%     0.87 97.5%     0.29 

MobileNets 1.0-128 96.8%     0.15 96.4%     0.35 96.8%     0.35 

MobileNets 0.75-244 97.6%     0.36 96.8%     0.75 96.0%     0.35 

MobileNets 0.75-192 97.4%     0.25 96.7%     0.17 96.5%     0.61 

MobileNets 0.75-160 97.8%     0.23 97.2%     0.44 96.2%     0.96 

MobileNets 0.75-128 97.7%     0.10 96.8%     0.51 95.7%     1.50 

MobileNets 0.50-244 97.3%     0.87 96.1%     0.30 96.7%     0.81 

MobileNets 0.50-192 96.8%     0.45 96.2%     0.38 96.4%     0.40 

MobileNets 0.50-160 97.0%     0.66 95.8%     0.26 94.8%     0.72 

MobileNets 0.50-128 96.6%     0.06 96.4%     0.68 95.7%     0.06 

MobileNets 0.25-244 96.5%     0.21 95.6%     0.35 95.5%     0.38 

MobileNets 0.25-192 96.2%     0.21 95.0%     1.32 96.7%     0.61 

MobileNets 0.25-160 97.4%     0.15 95.4%     0.70 95.5%     0.15 

MobileNets 0.25-128 97.2%     0.21 96.3%     0.21 95.9%     1.22 

D. Remarks 

Overall, the experiment results signify the robustness and effectiveness of the combination of knowledge 

transferability and depthwise separable convolution in the task of pneumonia detection. A highly good accuracy score 

is achieved by 98.0% with a slight standard deviation of only   0.17. Interestingly, the lowest score accomplishing by 

the MobileNets 0.50-160 version under the data splitting scheme 60 | 20 | 20 is 94.8%   0.72 which also indicates a 

very good benchmark. Although MobileNets 0.25-128 has 14 million multiplication addition and 0.47 million 

parameters compared with 569 million multiplication addition and 4.24 million parameters of MobileNets 1.0-244, see 

Table (3), the performance of these models is not significantly different. Looking further into all experiment 

approaches, the performance of 16 versions of the architecture when the training epoch greater than 1500 is identical 

for all models. The accuracy score becomes stable beyond 1500
th

 epoch. One of the things to note is that the dataset is 

unbalanced as 3874 and 1341 images are pneumonia and normal respectively. The authors inspect the confusion matrix 

of the most powerful architecture, e.g. the MobileNets 1.0-224, showing that the sensitivity and specificity are similarly 

reliable results, e.g. 97.0% and 98.1% respectively. The best achievement of our adapted model's architecture on the 

training and test sets, e.g. MobileNets 1.0-244, is presented in Figure (4). 
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Figure 4. The classification accuracy on the training and validation sets in case of MobileNets 1.0-244 architecture 

One of the interesting phenomena to note in Figure (4) is that several dramatical plunges in the training’s line 

are observed. A possible reason is that the model encounters various complicated observations during training. 

However, these falls do not affect the model's performance on the validation set. We extend the number of training 

epoch to 4000 and 6000 and this phenomenon fades away. 

V. CONCLUSION 

By conducting this research paper, the authors have investigated a deep convolutional neural network 

combining with the idea of transfer learning and applied it on a critical task of radiography image classification. We 

aim our research at supporting image analysis in a hospital that paves an association between computer vision and 

medical duties. The potential generalization of deep learning and transfer in the context of image analysis has been 

highlighted. An application in pneumonia detection has been deployed by utilizing cutting-edge machine learning 

frameworks and depthwise separable convolution that would indicate blossom research in this direction. The 

development of the framework started with a specific focus on the binary of pneumonia versus normal, but soon 

expands toward many other image-categorization-based problems and quantification. We comprehend several vital 

results on both theory and practice such as convolution, neural network architecture, a configuration of CNN, 

implementation of CNN on an open source software, investigation of a crucial medical diagnosis. We obtain a 

benchmark classification accuracy of 98.0%   0.17 on the obtained observations. 
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TỰ ĐỘNG NHẬN DẠNG BỆNH VIÊM PHỔI TỪ ẢNH X-QUANG SỬ DỤNG 
PHƯƠNG PHÁP HỌC KẾT CẤU TÍCH CHẬP THEO CHIỀU SÂU 

 

Nghia Duong-Trung, Tuyen Tran Ngoc, Hiep Xuan Huynh 

 
TÓM TẮT. Trong nghiên cứu y học về nhiễm trùng phổi, viêm phổi có thể do vi khuẩn hoặc vi rút gây ra. Khi phổi bị nhiễm viêm  

phổi, túi khí bị viêm và chứa đầy chất lỏng hoặc mủ. Chuyên gia X quang được đào tạo chuyên sâu có trách nhiệm xác định đúng 

viêm phổi có thể trong chụp X quang công nghiệp. Công việc này phụ thuộc rất nhiều vào năng lực và kinh nghiệm của chuyên gia, 

cộng với chất lượng hình ảnh X quang không đầy đủ. Do đó, việc phát hiện viêm phổi bằng các kỹ thuật hình ảnh y tế khác nhau trở 

nên rất khó khăn. Bất kỳ phát hiện sai có thể dẫn đến hậu quả nghiêm trọng trong điều trị y tế. Xác định chính xác là sơ bộ cho bất 

kỳ loại can thiệp. Do đó, công nghệ tận dụng trong việc phát hiện tự động các hình ảnh X quang này đã trở nên cần thiết. Thật 

không may, việc xây dựng và đào tạo một mô hình học sâu phức tạp từ đầu hầu như không khả thi do thiếu cơ sở hạ tầng phần cứng. 

Do đó, bài viết này khai thác ý tưởng học chuyển giao, đó là cải tiến việc học trong một nhiệm vụ dự đoán mới thông qua việc 

chuyển giao kiến thức từ một nhiệm vụ dự đoán liên quan đã được học. Điều này sẽ cải thiện các phương pháp thị giác máy tính 

hiện tại dựa trên việc sử dụng học sâu để chẩn đoán hiệu quả hơn sự hiện diện của viêm phổi trong hình ảnh X quang. Bằng cách sử 

dụng các mạng thần kinh tích chập được đào tạo lại với dữ liệu thu được của chúng tôi, thử nghiệm của chúng tôi cho thấy ý tưởng 

được đề xuất thực hiện hoàn hảo và đạt được độ chính xác phân loại là 98,0% ± 0,17 với thời gian triển khai chấp nhận được trên 

một máy tính xách tay thông thường. 
 

Từ khóa. Phát hiện viêm phổi, Học chuyển, Học sâu, Hình ảnh X-quang. 

 


