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ABSTRACT: This paper represents an efficient method of predicting customer purchase behavior based on mouse click event using 
deep learning. The data stream of mouse click event about customer interactions is fundamental and popular information that are 
recorded for different purposes, such as to elaborate the customer online purchase behavior. These information is now accelerating 
on internet with diverse features that are required to be analyzed by a powerful machine learning method... Wide and Deep 
Learning Network is selected with enhancements for predictive modeling to leverage the best capabilities of both Wide network and 
Deep network as joint learning neural network. The Wide and Deep neural network outperforms other same types of deep learning 
models with the ability to learn the behavior from both low and high-order interactions of features, while leveraging the 
memorization capability of linear models and generalization capability of deep neural network. Experimental results on real life 33 
million click dataset shows that the Wide and Deep model performs better predictions with accuracy up to 78.26%, compared to 
other models such as deep neural network, product-based neural network, and factorization-machine support neural network. 
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I. INTRODUCTION 

In the e-commerce industry, it is crucial to make the appropriate marketing decision to maximize the business 
benefits. The decision making is normally based on customer profile like age, sex, education, income, etc. and their 
history purchases for each customer segment. However, for small e-commerce businesses and most new e-commerce 
sites, it is not practical to build a complex data management system with the capability of collecting and managing 
customer profiles over time, due to constraints of time and resources. In addition, many anonymous users, without any 
profile information, make only few interactions within one or two sessions on small websites so features are not 
explicit to analyze and predict their decision. There are recently other types of information, which can be used to 
analyze and predict customer purchase behavior, are their interactions with businesses through websites such as 
purchase frequency, complaints, date and time, value of purchased products.... This information is called customer 
behavioral features.  

Customer behavior prediction is not simply to derive from each mouse click event, it requires to evaluate the 
sequential clicks as a session to predict the behavior through the analysis of customer’s hidden interactions beyond the 
these click events. Typically, hidden interactions are very complex to interpret, thus requires powerful modern machine 
learning to detect the potential patterns for learning, especially in the case of huge datasets with multiple features. 

The recommender systems for small ecommerce websites currently use simple approaches in which user 
information is unavailable, e.g., suggestions based on similarity on the product features, the probability of simultaneous 
occurrence or the product conversion rate, etc., common methods are often based on linear models, such as Follow-
The-Regularized-Leader (FTRL) (McMahan et al., 2013). Although bringing along some specific results, these models 
are not able to capture hidden interactions of features, particularly high-order interactions that did not appear obviously 
in the training dataset. Alternative approach uses the Factorization Machine model (FM) [Rendle, 2010], which 
evaluates the interaction between a pair of features by calculating their vector scalar product. Theoretically, the FM 
model can simulate high-order interactions, however, in practical applications, the model is only applied to 2nd order 
interactions due to high complexity 

With the ability to effectively learn, capture and simulate features, deep neural networks are increasingly used in 
the analysis of hidden interactions among features. Several recent studies have implemented Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN) to analyze and predict customer click events [Liu et al., 2015; 
Zhang et al., 2014]. However, the accuracy of the CNN depends much on interactions between contiguous features, 
while the RNN is only used to process sequential data. [Zhang et al., 2016] investigated and proposed the use of 
Factorization-machine supported Neural Network (FNN), in which the author conducts training in an FM network and 
then uses the output to feed into deep neural networks; therefore, the output of this method is limited by capability of 
the FM model. [Qu et al., 2016] considered interactions between features by adding a product layer between the 
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embedding layer and the first hidden layer of deep neural networks, aiming to develop a Product-based Neural 
Network (PNN). However, in the study by [Cheng et al., 2016] indicates that PNN, FNN, and many other deep learning 
networks limit their capacity of remembering low-order interactions; while considering both high and low-order 
interactions will increase the accuracy of the model. 

For the above-mentioned reasons, the study presents an approach to predict customer purchase behavior based 
on behavioral features from the whole session in the clickstream data, which is applied for the context where customer 
profile is not accurate and incomplete or not available. By processing and analyzing the customer’s sequential click 
events in the whole session, the hidden patterns associated with the customer purchase behavior will be identified and 
extracted as input for the deep learning model, which predicts the customer purchase decision. Deep and Wide network 
[Cheng et al., 2016] with the ability to learn both low- and high-order interactions of features will be used for 
predictive modeling. 

II. THE PROPOSED METHOD 

II.1 Problem Statement 

The study assumes that each click session is about an independent user. The customer purchase behavior is 
hidden within the characteristics of each session (number of times, frequency, click time, etc.). The goal of this paper is 
to predict customer purchase behavior based on their click events in a session on a specific e-commerce site, with two 
answers:  

(1) predict whether the user make a purchase in this session; 
(2) if any, forecast which items will be purchased.  

For the above purpose, the problem is given as a binary classification, in which the classifier returns the 
probability of the "purchase" event. 

Assume that the training data set consists of n samples (χ, y), whereas χ is the sequence of data recorded by m 
features relating to customer and product, and y ∈ {0, 1} denotes respectively the purchase behavior of the customer (y 
= 1 if the customer buys the product, y = 0 otherwise).  

Features of χ can be categories (e.g., product category...) or contiguous (e.g. number of clicks ...). Each category 
feature is represented by a coefficient vector, and contiguous features are represented by their own values.  

Thus, each sample in the dataset is represented by a point (x, y) where x = [x1, x2, …, xj, …, xm], is a m–
dimension vector, and xj is the vector that represents the j-th field in χ. Usually, x has multi-dimensions and very sparse 
density. The main objective of this paper is to build a predictive model y ≈ ŷ = f(x) to evaluate the probability of a 
customer purchase decision for specific products. 

II.2 Feature Extraction 

We assume that the mouse click events contains some very basic data that any system can generate in 
production, with this assumption, we generalize the raw data as 

- The click data consists of product and its category, the click time of that session 

- The buy data contains of the product that is purchased with the quantity and the price, linked to the session 
above. A product is clicked but not purchased then it is not recorded in the buy data 

The raw data is being engineered and extracted to features that are predictably impacted to the customer 
purchase behavior. After the intensive engineering stage, we propose to use the factor “Purchase/Click” as the core to 
analyze purchase possibility over other factors, also considered as extracted features. Below are some key factor 
analyses that provides the valuable insights for the purchase possibility 

- Clicks per Session: The more clicks are occurred the higher purchase possibility is (Figure 1a). 

- The most clicked products: The more clicks on the product the higher possibility that product will be 
purchased. However, the purchase ratio seems not consistent and varies on different products (Figure 1b) 

- Session Hour: The purchase possibility also depends on the hour of the day, the data shows that the 
possibility is quite high from 3pm to 7pm, and rather low around 11pm to 4am next day (Figure 1c) 

- Session Date: Data shows that the date of the week could reflect the purchase possibility with the peak on 
Saturday and lowest on Tuesday (Figure 1d). 

- Session Duration: This seems to be the critical extracted feature to predict the purchase per click ratio. The 
duration of 15 to 20 minutes shows the highest possibility and drops it the session takes longer (Figure 1e). 
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Figure 1. The purchase/click trends of extracted features 

In addition, the analysis shows that the purchase possibility could be predicted by other features such as the 
product displayed duration, number of clicked products in the session, the previous and the next product that are being 
viewed… Although these features are not strongly impacted to the purchase decision they are still used to train the 
model with the purpose to improve the prediction accuracy  

Based on the above feature engineering and extraction process, there are 26 extracted features as the input layer 
for the neural network of the predictive model, they are grouped into different classes: item features, session features, 
and time features. 

Item Features (2 features) 

Product ID Categorical feature The ID of the product 
Cat ID Categorical feature The ID of the category that the product belongs to 

Session Features (11 features) 

The First Product Categorical feature The first product ID in the session 
The Pre Product Categorical feature The previous product ID in the session 
Session Duration Contiguous feature The duration of the session 
Current Duration Contiguous feature The duration from the session starts 
#Click per Session Contiguous feature Number of clicks per session 
#Product per Session Contiguous feature Number of products per session 
#Click So Far Contiguous feature Number of clicks so far in the session 
#Product So Far Contiguous feature Number of products clicked so far in the session 
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ỨNG DỤNG MẠNG HỌC SÂU VÀ RỘNG TRONG DỰ ĐOÁN HÀNH VI MUA  
CỦA KHÁCH HÀNG DỰA TRÊN CƠ SỞ DỮ LIỆU NHẤP CHUỘT 

Nguyễn Tuấn Khang, Nguyễn Việt Anh, Vũ Như Lân, Mai Thúy Nga, Nguyễn Phú Bình 

 
TÓM TẮT: Trong thương mại điện tử, dữ liệu nhấp chuột của khách hàng là loại dữ liệu thông dụng và cơ bản nhất được ghi nhận, 
trong đó có chứa nhiều thông tin ẩn liên quan tới hành vi mua sắm của khách hàng. Thông thường, các thông tin này cùng với 
tương tác ẩn của chúng rất phức tạp, và chỉ có thể được phát hiện nhờ kỹ thuật học máy hiện đại. Với khả năng học và nắm bắt và 
mô phỏng thuộc tính hiệu quả, mạng nơ-ron sâu ngày càng được sử dụng phổ biến trong phân tích đánh giá tương tác ẩn của các 
trường thuộc tính. Bài báo trình bày phương pháp dự báo hành vi mua của khách hàng dựa trên cơ sở dữ liệu nhấp chuột sử dụng 
mạng học Sâu và Rộng để xây dựng mô hình dự báo. So với các mô hình học sâu cùng loại, mạng Sâu và Rộng vượt trội hơn do có 
khả năng học được tương tác bậc thấp lẫn bậc cao của các trường thuộc tính, đồng thời tận dụng được khả năng ghi nhớ của mô 
hình tuyến tính và khả năng tổng quát hóa của mạng nơ-ron sâu vào trong cùng một mô hình. Kết quả thử nghiệm trên dữ liệu chuỗi 
nhấp chuột thực tế với hơn 33 triệu phiên làm việc cho thấy, so với các mô hình cùng loại khác như mạng nơ-ron sâu (DNN), mạng 
nơ-ron tích chập (PNN) hay mạng nơ-ron phân tích nhân tử (FNN), mô hình Sâu và Rộng cho dự báo tốt hơn với độ chính xác lên 
đến 78.26%. 


